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SOLUTIONS: Quiz #2

Problem 1

(1 —a) [10 points]  Plotting the Root Locus
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that all the root locus branches go
straight from —2 to the three
directions. So the three asymptotes
give the exact root locus.

(1 -Db) [15 points] Feedback Gain




From our plot we know that the marginally stable poles lie at: * j 243
p+q=\u2+@4§f=4
K=4 =64

This computation is quite simple, if you realize that you can use the characteristics of a
30-60-90 triangle to find each length graphically.

Checking with the Routh Hurwitz Table

First finding the closed-loop characteristic equation:
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So, 8+ K <72 .. K <64
Marginally stable when K =64, just as we found graphically.

(1 —c) [15 points] Poles for peak time
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The position of this pole can be found graphically, using the characteristics of a 30-60-90
triangle as shown above. Or, you can also think of the root locus is given by the line with

slope = V3, and y-intercept 24/3 . Then, the equation for this line would be:
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We already know the y-coordinate so all we need to find is the x-coordinate.
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So, the dominant closed loop poles are
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The third pole for this given gain is found by working backwards from the equation
above. Replacing s by a real number & in the above equation,
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The third pole is at —5; 10 times farther from the imaginary axis than the dominant poles.
Therefore the second-order approximation is valid.

Problem 2
(2-a) [10points] Modeling
The equation of motion: The nozzle reaction force creates this

. . / moment about the joint axis.
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(2—-Db) [20 points]
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Now we know exactly what our
desired Closed Loop Poles are:
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Now we need to find the location of

the zero along the real axis
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(2—c) [15 points] Steady State error
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Deriving the equation for error again:
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(2—-d) [15 points] Compensator: PI

In order to reduce the steady state error contribution of the disturbance to zero consider a
PI controller with a pole at the origin and a zero at s =—o
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The transfer function for the combined controller is now given by:
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