Department of Mechanical Engineering
 Massachusetts Institute of Technology
 2.010 Modeling, Dynamics, and Control III
 Spring 2002

SOLUTIONS: Quiz \#2
Problem 1
($1-\mathrm{a})$ [10 points] Plotting the Root Locus

Root Locus

(1 - b) [15 points] Feedback Gain

$$
K=\frac{1}{|G(s)|}=|s+2|^{3}
$$

From our plot we know that the marginally stable poles lie at: $\pm j 2 \sqrt{3}$

$$
\begin{aligned}
&|s+2|=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=4 \\
& \therefore K=4^{3}=64
\end{aligned}
$$

This computation is quite simple, if you realize that you can use the characteristics of a 30-60-90 triangle to find each length graphically.

Checking with the Routh Hurwitz Table
First finding the closed-loop characteristic equation:

$$
T(s)=\frac{K G}{1+K G}=\frac{K}{(s+2)^{3}+K}=\frac{K}{s^{3}+6 s^{2}+12 s+(8+K)}
$$

$\mathbf{s}^{\mathbf{3}}$	1	12
$\mathbf{s}^{\mathbf{2}}$	6	$8+\mathrm{K}$
$\mathbf{s}^{\mathbf{1}}$	$12-\frac{8+K}{6}$	0
$\mathbf{s}^{\mathbf{0}}$	$8+\mathrm{K}$	0

So, $8+K<72 \therefore K<64$
Marginally stable when $K=64$, just as we found graphically.

(1-c) [15 points] Poles for peak time

	Peak time given by: $\begin{aligned} & T_{p}=\frac{2 \sqrt{3} \pi}{9}=\frac{\pi}{\omega_{d}} \\ & \omega_{d}=\frac{9}{2 \sqrt{3}}=\frac{3 \sqrt{3}}{2} \end{aligned}$

The position of this pole can be found graphically, using the characteristics of a 30-60-90 triangle as shown above. Or, you can also think of the root locus is given by the line with slope $=\sqrt{3}$, and y-intercept $2 \sqrt{3}$. Then, the equation for this line would be:

$$
y=\sqrt{3} x+2 \sqrt{3}
$$

We already know the y-coordinate so all we need to find is the x -coordinate.

$$
\begin{gathered}
y=\frac{3 \sqrt{3}}{2}, \text { so: } \\
\frac{3 \sqrt{3}}{2}=\sqrt{3} x+2 \sqrt{3} \\
\therefore x=-\frac{1}{2}
\end{gathered}
$$

So, the dominant closed loop poles are

$$
\begin{gathered}
p_{1,2}=-\frac{1}{2} \pm j \frac{3 \sqrt{3}}{2} \\
K=|s+2|^{3}=\left(\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{3 \sqrt{3}}{2}\right)^{2}}\right)^{3}=3^{3}=27
\end{gathered}
$$

The third pole for this given gain is found by working backwards from the equation above. Replacing s by a real number σ in the above equation,

$$
\begin{gathered}
K=|\sigma-(-2)|^{3}=|\sigma+2|^{3}=27 \\
|\sigma+2|=3 \\
\therefore \sigma=-5
\end{gathered}
$$

The third pole is at $-5 ; 10$ times farther from the imaginary axis than the dominant poles. Therefore the second-order approximation is valid.

Problem 2

(2-a) [10points] Modeling

The equation of motion:

$$
J \ddot{\theta}=\tau-b \dot{\theta}+F_{d} \times L
$$

The nozzle reaction force creates this moment about the joint axis.

$$
\begin{gathered}
\left(J s^{2}+b s\right) \theta(s)=\tau(s)+L F_{d}(s) \\
y(s)=\theta(s) \cdot L=\frac{L \tau(s)+L^{2} F_{d}(s)}{s(J s+b)}
\end{gathered}
$$

(2 - b) [20 points] PD Control

$T_{s}=1 \sec =\frac{4}{\zeta \omega_{n}}=\frac{4}{\sigma}$
$\sigma=4$

$\zeta=\frac{1}{\sqrt{2}}, \sin \theta=\frac{1}{\sqrt{2}}$
$\theta=45^{\circ}$

(2-c) [15 points] Steady State error

Deriving the equation for error again:

$$
\begin{gathered}
y=G\left(2 F_{d}+G_{c} e\right) \\
e=r-y=r-2 G F_{d}-G G_{c} e \\
\left(1+G G_{c}\right) e=r-2 G F_{d} \\
e=\frac{r-2 G F_{d}}{1+G G_{c}}
\end{gathered}
$$

For $r=\frac{1}{s}, \quad e_{s s, r}=\lim _{s \rightarrow 0} s \frac{1}{s} \frac{10 s(s+4)}{10 s(s+4)+320\left(1+\frac{1}{8} s\right)}=0$
For $F_{d}=\frac{1}{s}, \quad-e_{s s, F_{d}}=\lim _{s \rightarrow 0} s \frac{1}{s} \frac{2}{10 s(s+4)+320\left(1+\frac{1}{8} s\right)}=\frac{1}{160}=0.00625$

(2 - d) [15 points] Compensator: PI

In order to reduce the steady state error contribution of the disturbance to zero consider a PI controller with a pole at the origin and a zero at $s=-\sigma$

$$
G_{c}=K\left(1+\frac{1}{8} s\right)\left(1+\frac{\sigma}{s}\right)
$$

For $F_{d}=\frac{1}{s^{2}}$

$$
-e_{s s, F_{d}}=\lim _{s \rightarrow 0} s \frac{1}{s^{2}} \frac{2}{10 s(s+4)+320\left(1+\frac{1}{8} s\right)\left(1+\frac{\sigma}{s}\right)}
$$

$$
\begin{gathered}
-e_{s s}=\lim _{s \rightarrow 0} \frac{2}{10 s^{2}(s+4)+320\left(1+\frac{1}{8} s\right)(s+\sigma)}=\frac{1}{160 \sigma}=0.0625=6.25 \% \\
\sigma=\frac{1}{160 \times 0.0625}=0.1
\end{gathered}
$$

The transfer function for the combined controller is now given by:

$$
G_{c}=320\left(1+\frac{1}{8} s\right)\left(1+\frac{0.1}{s}\right)=\frac{(320+40 s)(s+0.1)}{s}
$$

$$
G_{c}=\frac{10 s^{2}+324 s+32}{s}=32 \frac{1.25 s^{2}+10.125 s+1}{s}
$$

