PS 6	NAME	
Problem 1	Realizes that the steady state error will only be finite	
1.1	for a ramp input since G(s) is of Type 1	
Problem 2	Another Type 1 system, will yield a constant steady	
2.1	state error for the ramp input given. Can find	
	appropriate K	
2.2	Finds correct K _v	
2.3	Understands it is necessary to find the value of K that	
	yields smallest steady state error	
2.4	This value of K will be on the imaginary access and	
	is found using the Routh Hurwitz Table.	
2.5	Finds correct steady state error	
Problem 3	Finds 'n' first since K_v is a constant, n must be 1	
3.1		
3.2	Finds the relationship between 'K' and 'a' given	
	%OS, and given K _v	
3.3	Solves the two equations to find 'K' and 'a'	
Problem 4	Straight forward out of the book. Uses correct	
4.1	equation for the contribution of the disturbance.	