PS 7	NAME	
Problem 1	Must be able to immediately see that a non- symmetrical plot cannot be a root locus	
1.2	Must be able to immediately see there must be a real axis segment if there is an odd number of poles and zeroes to the left	
Problem 2 2.1	These should be done by hand, not with matlab. Fills	
2.2	Has one branch going towards each zero	
2.3	Has the correct number of asymptotes	
Problem 3 3.1	a) Is able to plot the root locus correctly. Should be done by hand.	
3.2	Uses routh hurwitz table to find the values of K that make the system stable.	
3.3	OR Uses matlab or another method to find the value of K	
3.4	b) Is able to plot the root locus correctly. Should be done by hand.	
3.5	Finds the values of K for stability	
Problem 4	Plots root locus correctly. 4.1	Finds the correct number of asymptotes and the angles at which they take off
4.2	Uses the equation to find the position of the asymptotes.	Finds the K to make the system marginally stable value of K when s = -0.5
4.3	Is able to plot back into the equation for K to get the	
4.4	4.5	

