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2.016 Hydrodynamics 
Prof. A.H. Techet 

 
 
Potential Flow Theory 
 

“When a flow is both frictionless and irrotational, pleasant things happen.” –F.M. 
White, Fluid Mechanics 4th ed.  

 
We can treat external flows around bodies as invicid (i.e. frictionless) and irrotational 
(i.e. the fluid particles are not rotating).  This is because the viscous effects are limited to 
a thin layer next to the body called the boundary layer.  In graduate classes like 2.25, 
you’ll learn how to solve for the invicid flow and then correct this within the boundary 
layer by considering viscosity.  For now, let’s just learn how to solve for the invicid flow. 
 
We can define a potential function, ( )x z t! , , , as a continuous function that satisfies the 
basic laws of fluid mechanics: conservation of mass and momentum, assuming 
incompressible, inviscid and irrotational flow.   
 
There is a vector identity (prove it for yourself!) that states for any scalar, 
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By definition, for irrotational flow, 
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where ( , , , )x y z t! !=  is the velocity potential function.  Such that the components of 
velocity in Cartesian coordinates, as functions of space and time, are 
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Laplace Equation 

  
The velocity must still satisfy the conservation of mass equation.  We can substitute in 
the relationship between potential and velocity and arrive at the Laplace Equation, which 
we will revisit in our discussion on linear waves.  
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For your reference given below is the Laplace equation in different coordinate systems: 
Cartesian, cylindrical and spherical. 
 

Cartesian Coordinates  (x, y, z)  
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Cylindrical Coordinates  (r, θ, z)   
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Spherical Coordinates (r, θ, ϕ ) 
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Potential Lines 
 
Lines of constant !  are called potential lines of the flow.  In two dimensions 
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Since 
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d" = 0  along a potential line, we have 
  

 

! 

dy

dx
= "

u

v
 (4.4) 

 
 

Recall that streamlines are lines everywhere tangent to the velocity, 

! 

dy

dx
=
v

u
, so potential 

lines are perpendicular to the streamlines.  For inviscid and irrotational flow is indeed 
quite pleasant to use potential function, ! , to represent the velocity field, as it reduced 
the problem from having three unknowns (u, v, w) to only one unknown (! ). 
 
As a point to note here, many texts use stream function instead of potential function as it 
is slightly more intuitive to consider a line that is everywhere tangent to the velocity.  
Streamline function is represented by ! .  Lines of constant  !  are perpendicular to lines 
of constant ! , except at a stagnation point.   



2.016 Hydrodynamics  Reading #4 
 

version 1.0 updated 9/22/2005 -4- ©2005 A. Techet 
 

Luckily !  and !  are related mathematically through the velocity components:  
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Equations (4.5) and (4.6) are known as the Cauchy-Riemann equations which appear in 
complex variable math (such as 18.075).  

 

Bernoulli Equation 
 
The Bernoulli equation is the most widely used equation in fluid mechanics, and assumes 
frictionless flow with no work or heat transfer.  However, flow may or may not be 
irrotational.  When flow is irrotational it reduces nicely using the potential function in 
place of the velocity vector.   The potential function can be substituted into equation 3.32 
resulting in the unsteady Bernoulli Equation. 
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Summary 
 Potential Stream Function 

Definition !="V  !="#V
v  

Continuity   
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2
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Irrotationality  
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Cauchy-Riemann Equations for !  and ! from complex analysis:  
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For irrotational flow use:  !  

For incompressible flow use: !  
For incompressible and irrotational flow use: !  and !  
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Potential flows 
 
Potential functions !  (and stream functions,! ) can be defined for various simple flows. 
These potential functions can also be superimposed with other potential functions to 
create more complex flows.  
 
 
Uniform, Free Stream Flow (1D) 
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 u U
x y

! "# #
= = =

# #
 (4.11) 

 

 0v
y x

! "# #
= = = $

# #
 (4.12) 

 
We can integrate these expressions, ignoring the constant of integration which ultimately 
does not affect the velocity field, resulting in !  and !  
 
 Ux! =      and     Uy! =  (4.13) 
 
Therefore we see that streamlines are horizontal straight lines for all values of y (tangent 
everywhere to the velocity!) and that equipotential lines are vertical straight lines 
perpendicular to the streamlines (and the velocity!) as anticipated.  
 

• 2D Uniform Flow:  ( , ,0)U V=V ; Ux Vy! = + ; Uy Vx! = "  
• 3D Uniform Flow:  ( , , )U V W=V ; Ux Vy Wz! = + + ; no stream function in 3D 

 
 



2.016 Hydrodynamics  Reading #4 
 

version 1.0 updated 9/22/2005 -7- ©2005 A. Techet 
 

Line Source or Sink 
 
Consider the z-axis (into the page) as a porous hose with fluid radiating outwards or 
being drawn in through the pores.  Fluid is flowing at a rate Q (positive or outwards for a 
source, negative or inwards for a sink) for the entire length of hose, b. For simplicity take 
a unit length into the page (b = 1) essentially considering this as 2D flow. 
 

 
 
Polar coordinates come in quite handy here. The source is located at the origin of the 
coordinate system.  From the sketch above you can see that there is no circumferential 
velocity, but only radial velocity. Thus the velocity vector is 
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Integrating the velocity we can solve for !  and !  
 
 lnm r! =   and   m! "=  (4.17) 

where 
2

Q
m

!
= .  Note that !  satisfies the Laplace equation except at the origin: 

2 2
0r x y= + = , so we consider the origin a singularity (mathematically speaking) and 

exclude it from the flow.  
 

• The net outward volume flux can be found by integrating in a closed contour 
around the origin of the source (sink): 
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Irrotational Vortex (Free Vortex) 
 
 
A free or potential vortex is a flow with circular paths around a central point such that the 
velocity distribution still satisfies the irrotational condition (i.e. the fluid particles do not 
themselves rotate but instead simply move on a circular path).  See figure 2.   
 
 

  
 

Figure 2: Potential vortex with flow in circular patterns around the center. 
Here there is no radial velocity and the individual particles do not rotate 
about their own centers.  

 
 
 
It is easier to consider a cylindrical coordinate system than a Cartesian coordinate system 
with velocity vector ( , , )

r z
u u u!=V  when discussing point vortices in a local reference 

frame.  For a 2D vortex, 0
z
u = .  Referring to figure 2, it is clear that there is also no 

radial velocity. Thus, 
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Let us derive 

! 

u" .  Since the flow is considered irrotational, all components of the 
vorticity vector must be zero. The vorticity in cylindrical coordinates is 
 

 1 1 1
0

z r z r

r z

u ruu u u u

r z z r r r r

! !
!

! !

" "" " " "# $ # $# $
%& = ' + ' + ' =( )( ) ( )" " " " " "* +* + * +
V e e e ,  (4.21) 

 
where 



2.016 Hydrodynamics  Reading #4 
 

version 1.0 updated 9/22/2005 -9- ©2005 A. Techet 
 

 2 2 2

r x y
u u u= + , (4.22) 
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and  
 0

z
u =  (for 2D flow). 

 
 
Since the vortex is 2D, the z-component of velocity and all derivatives with respect to z 
are zero.  Thus to satisfy irrotationality for a 2D potential vortex we are only left with the 
z-component of vorticity (

z
e ) 

 

 0
r

ru u

r

!

!

" "
# =

" "
 (4.24) 

 
Since the vortex is axially symmetric all derivatives with respect θ must be zero.  Thus,  
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From this equation it follows that ru!  must be a constant and the velocity distribution for 
a potential vortex is  
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By convention we set the constant equal to 
2!

" , where Γ is the circulation,.  Therefore 
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Figure 3: Plot of velocity as a function of radius from the vortex center.  
At the core of the potential vortex the velocity blows up to infinity and is 
thus considered a singularity.  

 

r 

Uθ  
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You will notice (see figure 3) that the velocity at the center of the vortex goes to infinity 
(as 0r! ) indicating that the potential vortex core represents a singularity point.  This is 
not true in a real, or viscous, fluid. Viscosity prevents the fluid velocity from becoming 
infinite at the vortex core and causes the core rotate as a solid body. The flow in this core 
region is no longer considered irrotational. Outside of the viscous core potential flow can 
be considered acceptable. 
 
Integrating the velocity we can solve for !  and !  
 
 K! "=   and   lnK r! = "  (4.28) 
 
where K  is the strength of the vortex.  By convention we consider a vortex in terms of its 
circulation, ! , where 2 K!" =  is positive in the clockwise direction and represents the 
strength of the vortex, such that  
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Note that, using the potential or stream function, we can confirm that the velocity field 
resulting from these functions has no radial component and only a circumferential 
velocity component. 
 
The circulation can be found mathematically as the line integral of the tangential 
component of velocity taken about a closed curve, C, in the flow field. The equation for 
circulation is expressed as  
 
 
 

C

d! = "# V s  

 
 
where the integral is taken in a counterclockwise direction about the contour, C,  and 
ds is a differential length along the contour. No singularities can lie directly on the 
contour.  The origin (center) of the potential vortex is considered as a singularity point in 
the flow since the velocity goes to infinity at this point. If the contour encircles the 
potential vortex origin, the circulation will be non-zero. If the contour does not encircle 
any singularities, however, the circulation will be zero.  
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To determine the velocity at some point P away from a point vortex (figure 4), we need 
to first know the velocity field due to the individual vortex, in the reference frame of the 
vortex.   Equation Error! Reference source not found. can be used to determine the 
tangential velocity at some distance ro from the vortex.  It was given up front that 0

r
u =  

everywhere.  
 
Since the velocity at some distance ro from the body is constant on a circle, centered on 
the vortex origin, the angle θo is not crucial for determining the magnitude of the 
tangential velocity. It is necessary, however, to know θo in order to resolve the direction 
of the velocity vector at point P. The velocity vector can then be transformed into 
Cartesian coordinates at point P using equations (4.22) and (4.23).   
 
 
 

  
 
 

Figure 4: Velocity vector at point P due to a potential vortex, with strength 
Γ, located some distance ro away. 
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Linear Superposition 
 
All three of the simple potential functions, presented above, satisfy the Laplace equation. 
Since Laplace equation is a linear equation we are able to superimpose two potential 
functions together to describe a complex flow field.  Laplace’s equation is  
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Therefore the combined potential also satisfies continuity (Laplace’s Equation)! 
 
Example: Combined source and sink  
 
Take a source, strength +m, located at (x,y) = (-a,0) and a sink, strength –m, located at 
(x,y) = (+a,0). 
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This is presented in cartesian coordinates for simplicity. Recall 2 2 2
r x y= + so that  
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This is analogous to the electro-potential patterns of a magnet with poles at ( ),0a± . 
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Example: Multiple Point Vortices 
 
Since we are able to represent a vortex with a simple potential velocity function, we can 
readily investigate the effect of multiple vortices in close proximity to each other.  This 
can be done simply by a linear superposition of potential functions. Take for example two 
vortices, with circulation 

1
! and

2
! , placed at a±  along the x-axis (see figure 5). The 

velocity at point P can be found as the vector sum of the two velocity components V1 and 
V2, corresponding to the velocity generated independently at point P by vortex 1 and 
vortex 2, respectively.  
 

  
 

Figure 5: Formulation of the combined velocity field from two vortices in 
close proximity to each other. Vortex 1 is located at point (x, y) = (-a, 0) 
and vortex 2 at point (x, y) = (+a, 0). 

 
 
The total velocity potential function is simply a sum of the potentials for the two 
individual vortices 
 

 1 2

1 2 1 2 1 2

2 2
T v v
! ! ! ! ! " "

# #

$ $
= + = + = +  

 
with 

1
! and

2
! taken as shown in figure 5.  One vortex in close proximity to another vortex 

tends to induce a velocity on its neighbor, causing the free vortex to move. 
 
 
 


