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0.1 Derivation of unsteady Bernoulli’s Equation

Conservation of Momentum says
m~a = ~F

so
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This is the acceleration and forces acting on Bob the Fluid Blob. The total derivative of the velocity is
expanded like this:
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For irrotational flow, (~∇× ~V = 0), so (~V · ~∇)~V = ~∇(1
2
~V · ~V ) and
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Also for irrotational flow, we can use the velocity potential ~V = ~∇φ, and we have
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The forces acting on Bob are pressure and gravity, so the momentum equation becomes
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And in one last glorious step, we integrate all the spacial derivatives (i.e. knock the nabla out), and we
have the unsteady Bernoulli’s Equation;
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where F (t) is some function of t (is the ”constant of integration”).
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