2.016 Hydrodynamics
 Professor A.H. Techet

0.1 Derivation of unsteady Bernoulli's Equation

Conservation of Momentum says

$$
m \vec{a}=\vec{F}
$$

SO

$$
\rho \vec{a}=\rho \frac{D \vec{V}}{D t}=\frac{\vec{F}}{\vec{V}}
$$

This is the acceleration and forces acting on Bob the Fluid Blob. The total derivative of the velocity is expanded like this:

$$
\begin{aligned}
\frac{D \vec{V}(t, x, y, z)}{D t} & =\frac{\partial \vec{V}}{\partial t}+\frac{\partial \vec{V}}{\partial x} \underbrace{\frac{\partial x}{\partial t}}_{u}+\frac{\partial \vec{V}}{\partial y} \underbrace{\frac{\partial y}{\partial t}}_{v}+\frac{\partial \vec{V}}{\partial z} \underbrace{\frac{\partial z}{\partial t}}_{w} \\
\frac{D \vec{V}}{D t} & =\frac{\partial \vec{V}}{\partial t}+u \frac{\partial \vec{V}}{\partial x}+v \frac{\partial \vec{V}}{\partial y}+w \frac{\partial \vec{V}}{\partial z} \\
& =\frac{\partial \vec{V}}{\partial t}+\left(u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}\right) \vec{V} \\
& =\frac{\partial \vec{V}}{\partial t}+\left((u, v, w) \cdot\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)\right) \vec{V} \\
\frac{D \vec{V}}{D t} & =\frac{\partial \vec{V}}{\partial t}+(\vec{V} \cdot \vec{\nabla}) \vec{V}
\end{aligned}
$$

For irrotational flow, $(\vec{\nabla} \times \vec{V}=0)$, so $(\vec{V} \cdot \vec{\nabla}) \vec{V}=\vec{\nabla}\left(\frac{1}{2} \vec{V} \cdot \vec{V}\right)$ and

$$
\frac{D \vec{V}}{D t}=\frac{\partial \vec{V}}{\partial t}+\vec{\nabla}\left(\frac{1}{2} \vec{V} \cdot \vec{V}\right)
$$

Also for irrotational flow, we can use the velocity potential $\vec{V}=\vec{\nabla} \phi$, and we have

$$
\rho \frac{D \vec{V}}{D t}=\rho\left[\frac{\partial \vec{\nabla} \phi}{\partial t}+\vec{\nabla}\left(\frac{1}{2} \vec{\nabla} \phi \cdot \vec{\nabla} \phi\right)\right]
$$

The forces acting on Bob are pressure and gravity, so the momentum equation becomes

$$
\begin{array}{r}
\rho\left[\frac{\partial \vec{\nabla} \phi}{\partial t}+\vec{\nabla}\left(\frac{1}{2} \vec{\nabla} \phi \cdot \vec{\nabla} \phi\right)\right]=-\vec{\nabla} p-\underbrace{\rho g}_{\frac{d}{d z}(\rho g z)} \hat{k}=-\vec{\nabla} p-\vec{\nabla}(\rho g z) \\
\vec{\nabla}\left[\rho \frac{\partial \phi}{\partial t}+\frac{1}{2} \rho(\vec{\nabla} \phi \cdot \vec{\nabla} \phi)+p+\rho g z\right]=0
\end{array}
$$

And in one last glorious step, we integrate all the spacial derivatives (i.e. knock the nabla out), and we have the unsteady Bernoulli's Equation;

$$
\rho \frac{\partial \phi}{\partial t}+\frac{1}{2} \rho(\vec{\nabla} \phi \cdot \vec{\nabla} \phi)+p+\rho g z=F(t)
$$

where $F(t)$ is some function of t (is the "constant of integration").

