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Introduction to Free Surface Impact 
 
Free surface impact of objects has applications to ocean engineering such as ship 
slamming hydrodynamics.  The simplest geometric object to study is a sphere.  The 
hydrodynamics are three dimensional, but several basic concepts can be observed using 
high speed video sequences.  
 
The main focus of Part A of this laboratory exercise is to determine the terminal velocity 
of a sphere that impacts the free surface of a tank of water at high speeds.  When an 
object which is falling under the influence of gravity or subject to some other constant 
driving force is subject to a resistance (drag force) which increases with velocity, it will 
ultimately reach a maximum velocity where the drag force equals the driving force. This 
final, constant velocity of motion is called a "terminal velocity", a terminology made 
popular by skydivers. For objects moving through a fluid at low speeds so that turbulence 
is not a major factor, the terminal velocity is determined by viscous drag.   
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The drag force is  
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where U is the speed of the object, A is the frontal area of the object, and Cd = 0.5 is the 
coefficient of drag for a sphere.  
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The buoyancy force is  
 
 buoyancyF g!= "  (1.3) 
 
and force of gravity is simply  
 
 gravity

F mg=  (1.4) 
 

 

 
Flow about a sphere in a wind tunnel. 

 
 
Lab part A: 
 
In this section of the lab you will observe objects impacting the free surface at two speeds 
and continuing down into the tank. You are asked to qualitatively consider the behavior 
of the sphere at the moment of impact: the splash formation (height and shape), wave 
generation, bubble/cavity formation behind the sphere, etc.  You will take high speed 
video of the objects and use a software package to determine the position of the ball as a 
function of time, x(t).  A graduate student will show you how to operate the image 
recognition software. You will then use the data to determine the velocity of the ball as a 
function of time.  
 
As the ball approaches the bottom of the tank it may reach terminal velocity. Using the 
video recorded during the experiments you will determine whether this occurs and how 
this value compares with the expected value calculated using equation(1.1). 
 
Spinning Sphere: A case of a sphere spinning at a high rate of rotation will be 
demonstrated and video of the event will be posted on the website.  Consider the physics 
associated with this run.  Think about hitting a tennis ball or kicking a soccer ball with 
top spin.  When the ball reaches a certain depth it will make a sharp turn in one direction.  
What direction do you expect it to turn compared to its direction of spin? Think about the 
force balance on the sphere towards the end of the run and how the sphere can travel 
sideways given that gravity is acting downwards on the object.  
 
 



Write Up:  
 
• For the two non-spinning sphere cases: 
 

o Briefly describe and discuss the following features of the short moment of 
impact: the splash shape, height, wave pattern generated, and the cavity 
formation behind the ball.  Discuss how this cavity might affect the speed of 
the ball as it goes through the water?   

o Determine the terminal velocity analytically.   

o Plot dx/dt from the high-speed camera data, and determine if the ball has 
reached terminal velocity.  Compare dx/dt from the camera to the terminal 
velocity calculation you made in the pre-lab assignment. 

o How do the two different speed runs compare? Is the terminal velocity the 
same? Different? Does this make sense in light of the definition of terminal 
velocity? 

 
• For the one spinning sphere case: 
 

o Compare the hydrodynamics features (splash shape, height, etc.) at the 
moment of impact for a spinning and non-spinning sphere.  

o Describe the trajectory of the sphere and the bubble that forms at impact.  

o Discuss the direction that the sphere turns compared to its direction of spin  
o Try to rationalize the behavior of the spinning sphere considering the basic 

force balance on the sphere towards the end of the run, including how the 
sphere can travel sideways given that gravity is acting downwards on the 
object.  

 
 

 
 
 



Introduction to Added Mass 
 
 
For the case of unsteady motion of bodies underwater or unsteady flow around objects, 
we must consider an additional effect (force) acting on the structure when formulating the 
system equation.  
 
 
A typical mass-spring-dashpot system can be described by the following equation: 
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m˙ ̇ x + b ˙ x + kx = f (t) (1.5) 
 
where m is the system mass, b is the linear damping coefficient, k is the spring 
coefficient, f(t) is a driving force acting on the mass, and x is the displacement of the 
mass. The natural frequency ω of the system is simply 
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Given an object of mass m attached to a spring, you can determine the spring constant by 
setting the mass in motion and observing the frequency of oscillation, then using equation 
(1.6) to solve for k.  Alternately we can also determine the spring coefficient k by simply 
applying a force f and measuring the displacement x: 
 
 f kx= . (1.7) 
 
 
The apparent mass of an object in air differs from the apparent mass of an object in water.  
Statically, the buoyancy force acting on the body makes it appear less massive.  Using a 
load (force) cell to measure the weight Mg of an object will reveal this disparity quite 
clearly.  It is important to take this into account when formulating the natural frequency 
of a spring-mass system in water. In this lab we will compare the natural frequency of 
such a spring-mass system in air and in water.  In addition to the buoyancy effect, an 
added mass term must be considered.  
 
 
In a physical sense, this added mass is the weight added to a system due to the fact that an 
accelerating or decelerating body (ie. unsteady motion: 0dU dt ! ) must move some 
volume of surrounding fluid with it as it moves. The added mass force opposes the 
motion and can be factored into the system equation as follows: 
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m˙ ̇ x + b ˙ x + kx = f (t)"ma
˙ ̇ x  (1.8) 

 
where ma is the added mass. Reordering the terms the system equation becomes:  
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(m + ma )˙ ̇ x + b ˙ x + kx = f (t) (1.9) 
 
From here we can treat this again as a simple spring-mass-dashpot system with a new 
mass 

a
m m m! = + such that the natural frequency of the system is now 
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Theoretically the added mass of simple geometric shapes can be calculated using the 
following formulas: 
 
 

Sphere: 1
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Cylinder: 2

a
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where a is the cylinder radius and L is the cylinder length. 
 
 
In this lab, you will be measuring the added mass of several objects. Using a simple, one 
degree-of-freedom spring-mass system with a strain gauge and an oscilloscope (that 
measures the voltage the strain gauge outputs), you will measure the natural frequency of 
oscillation in air and water. From this information you will be able to form an 
experimental measurement of the added mass of three different objects. You will 
compare your experimental results to the theory and comment on the differences that may 
arise.  
 



Added Mass Experiment 
 
Below is a picture of the idealized system set-up: 
 

 
 
 
Note: We will be ignoring the viscous damping in this experiment. This approximation is 
acceptable for small amplitude oscillations in which inertial terms (accelerations) 
dominate. 
 
 
Proceedure:  
 
 
1. Calibrate the force gauge 
 
The force gauge measures load and outputs that as a voltage.  In order to use the force 
gauge, you need to be able to relate the voltage to the load (via a calibration constant C 
[kg/V]). Hang 4 weights of known mass from the hook, and record the voltage output 
from the oscilloscope. Make a plot of voltage versus load. 
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2. Measure the dimensions of the three objects 
 
Once you have finished the calibration, break into groups and choose an object to 
measure.  (Each group measure one object, and share the measurements with the other 
groups for the post lab write-up.) Record the dimensions of the object you picked. 
 
3. Measure weight and natural frequency of oscillation in air 
 
To measure the mass, hang your object from the force gauge, and record the voltage 
output corresponding to its weight in air.  To find the natural frequency, hang the object 
from the end of the spring and perturb it slightly. Observe the natural frequency data from 
the oscilloscope. Knowing the mass and natural frequency, you should now be able to 
calculate the spring constant, k. Keep in mind that k does not change when you oscillate 
to object in water. 
 
4. Measure weight and natural frequency of oscillation in water 
 
Use the cable extension to hang the object in the water. Repeat step 3. 
 
5. Compute the added mass of the object 
 
With the data you have gathered, you have everything you need to calculate an 
experimental value for the added mass of each object tested. 
 
 
Lab Write Up  
 

• Report the values for natural frequency of the systems (for all three objects) in 
both air and water.  Physically explain the differences in the two frequencies. 

 
• Compare the added mass value that you measured for each object and compare 

this to the theoretical value as determined by equation (1.11) or (1.12). Explain 
any differences between the values. 

 
• For the experimental value of the added mass, determine the ratio between the 

experimental added mass and the mass of a volume of water equivalent to the size 
of your object.  Does this make sense? Explain.  

 
• How does buoyancy affect our system?  

 
 
 


