Problem 1

The manipulator shown above is a six-DOF manipulator with five revolute joints and one prismatic joint. The link lengths are $\mathrm{H} 1=\mathrm{H} 2=\mathrm{H} 6=1 \mathrm{~m}$. The Denavit-H artenberg coordinate axes are given and assume the manipulator position is given by:

$$
\theta_{1}=10^{0}, \theta_{2}=20^{\circ}, d_{3}=1 \mathrm{~m}, \theta_{4}=0, \theta_{5}=0, \theta_{6}=0
$$

1) Write out the Denavit-H artenberg parameters for each link and compute numerically each DH matrix as well as the global homogeneous 4×4 transformation matrix (from Frame 0 to Frame6) for the given configuration.
2) Find the angular velocity ${ }^{0} \omega_{6}$ and the linear velocity ${ }^{0} V_{P}$ of point \mathbf{P} if the joints have the following velocities:

$$
\begin{aligned}
& \dot{\theta}_{1}=0.1 \mathrm{rad} / \mathrm{sec} \\
& \dot{\theta}_{2}=0.2 \mathrm{rad} / \mathrm{sec} \\
& \dot{\mathrm{~d}}_{3}=0.1 \mathrm{~m} / \mathrm{sec} \\
& \dot{\theta}_{4}=\dot{\theta}_{5}=\dot{\theta}_{6}=0.0
\end{aligned}
$$

3) Model this robot manipulator with Working M odel 3D. Use the given configuration in 1) as a starting configuration ($\mathrm{t}=0$) and apply the joint velocities given in 2) to the manipulator for a simulation time of 1 second.

Using Working Model-3D graphics, print out some graphical results showing:

- The model in the starting configuration and its bodies/ connections list
- The plotted curves of velocities (${ }^{0} \omega_{6},{ }^{0} V_{P}$) versus time
- The final configuration of the manipulator and the trajectory of P from $\mathrm{t}=0$ to $\mathrm{t}=1$ (in the 0 frame)

The number (and the organization) of pictures you will choose to include in the homework is left to your discretion, but try to be concise and precise.

