2.092/2.093 COMPUTER METHODS IN DYNAMICS Fall 2006

Homework 5

Instructor:	Prof. K. J. Bathe	Assigned:	Thurs., Oct 12
TA:	Samar Malek	Due:	Thurs., Oct 19

Problem 1 (20 points):

Consider the finite element model shown below. (The plane stress model is emailed to you).

 $E = 2e11 \text{ N/m}^2 \text{ v} = 0.3$

thickness for plane stress problem = 0.01 m

 a) Solve the model using ADINA assuming a plane stress problem. Plot the deformed geometry and make bandplots of all nonzero stresses. State the physical problem you thus have solved.

- b) Solve the model using ADINA assuming a plane strain problem. Plot the deformed geometry and make bandplots of all nonzero stresses. State the physical problem you thus have solved.
- c) Solve the model using ADINA assuming an **axisymmetric** problem. Plot the deformed geometry and make bandplots of all nonzero stresses. State the physical problem you thus have solved.
- d) In each case, show that your results make physical sense.

Problem 2 (10 points):

Consider Example 4.12, textbook page 188. Calculate the nodal point forces $\underline{F}^{(m)}$, m=1,2, and show explicitly that

$$\sum_{m=1}^{2} F^{(m)} = \underline{\mathbf{R}}$$

for each of the three nodes.