2.092/2.093
 Computer Methods in Dynamics

Fall 2006

Homework 5

Instructor: Prof. K. J. Bathe
Assigned: Thurs., Oct 12
TA:
Samar Malek
Due: Thurs., Oct 19

Problem 1 (20 points):
Consider the finite element model shown below. (The plane stress model is emailed to you).

$$
\mathrm{E}=2 \mathrm{e} 11 \mathrm{~N} / \mathrm{m}^{2} \quad v=0.3
$$

thickness for plane stress problem $=0.01 \mathrm{~m}$
a) Solve the model using ADINA assuming a plane stress problem. Plot the deformed geometry and make bandplots of all nonzero stresses. State the physical problem you thus have solved.
b) Solve the model using ADINA assuming a plane strain problem. Plot the deformed geometry and make bandplots of all nonzero stresses. State the physical problem you thus have solved.
c) Solve the model using ADINA assuming an axisymmetric problem. Plot the deformed geometry and make bandplots of all nonzero stresses. State the physical problem you thus have solved.
d) In each case, show that your results make physical sense.

Problem 2 (10 points):
Consider Example 4.12, textbook page 188.
Calculate the nodal point forces $\underline{F}^{(m)}, m=1,2$, and show explicitly that

$$
\sum_{\mathrm{m}=1}^{2} \mathrm{~F}^{(\mathrm{m})}=\underline{\mathrm{R}}
$$

for each of the three nodes.

