Problem Set #1

Due: Thursday, September 17, 2010

1. Eigenvalues and eigenvectors of the Pauli matrices
 Give the eigenvectors and eigenvalues of these four matrices:
 \[
 \sigma_0 \equiv I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \sigma_1 \equiv \sigma_x \equiv X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
 \sigma_2 \equiv \sigma_y \equiv Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad \sigma_3 \equiv \sigma_z \equiv Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
 \]

2. Eigenvalues and eigenvectors of a 4×4 matrix
 Give the eigenvalues and eigenvectors of this matrix:
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

3. Inner products
 For matrix \(M \), let \(M^\dagger = (M^T)^* \), where \(M^T \) is the transpose of \(M \), and \(* \) denotes the complex conjugate of \(M \). We call \(M^\dagger \) the adjoint of \(M \).
 Let
 \[
 v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad w = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
 \]
 (a) What is \(v^\dagger v \)?
 (b) What is \(v^\dagger w \)?
 (c) What is \(vv^\dagger \)?
 (d) What is \(v^\dagger Xw \)?

4. Hermitian matrices
 A matrix \(M \) is Hermitian if \(M^\dagger = M \). Let \(M \) be Hermitian.
 (a) Prove that all of its eigenvalues are real.
 (b) Prove that \(v^\dagger M v \) is real, for all vectors \(v \). When \(v^\dagger M v > 0 \), we say that \(M > 0 \).

5. Unitary matrices
 Let \(M \) be Hermitian, and define
 \[
 U = e^{iM} = \sum_k \frac{(iM)^k}{k!}
 \]
 Prove that \(U^\dagger U = I \), where \(I \) is the identity matrix.