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Glossary

Algorithm: A systematic procedure for solving a problem, frequently implemented as a

computer program.

Bit: The fundamental unit of information, representing the distinction between two possi-
ble states, conventionally called 0 and 1. The word ‘bit’ is also used to refer to a physical

system that registers a bit of information.

Boolean Algebra: The mathematics of manipulating bits using simple operations such as
AND, OR, NOT, and COPY.

Communication Channel: A physical system that allows information to be transmitted

from one place to another.

Computer: A device for processing information. A digital computer uses Boolean algebra

(g.v.) to processes information in the form of bits.

Cryptography: The science and technique of encoding information in a secret form. The
process of encoding is called encryption, and a system for encoding and decoding is called
a cipher. A key is a piece of information used for encoding or decoding. Public-key
cryptography operates using a public key by which information is encrypted, and a separate

private key by which the encrypted message is decoded.

Decoherence: A peculiarly quantum form of noise that has no classical analog. Decoherence
destroys quantum superpositions and is the most important and ubiquitous form of noise

in quantum computers and quantum communication channels.

Error-Correcting Code: A technique for encoding information in a form that is resistant
to errors. The syndrome is the part of the code that allows the error to be detected and

that specifies how it should be corrected.

Entanglement: A peculiarly quantum form of correlation that is responsible for many types
of quantum weirdness. Entanglement arises when two or more quantum systems exist in

a superposition of correlated states.



Entropy: Information registered by the microscopic motion of atoms and molecules. The

second law of thermodynamics (q.v.) states that entropy does not decrease over time.

Fault-Tolerant Computation: Computation that uses error-correcting codes to perform
algorithms faithfully in the presence of noise and errors. If the rate of errors falls below
a certain threshold, then computations of any desired length can be performed in a fault-

tolerant fashion. Also known as robust computation.

Information: When used in a broad sense, information is data, messages, meaning, knowl-
edge, etc. Used in the more specific sense of information theory, information is a quantity

that can be measured in bits.

Logic Gate: A physical system that performs the operations of Boolean algebra (¢.v.) such
as AND, OR, NOT, and COPY, on bits.

Moore’s Law: The observation, first made by Gordon Moore, that the power of computers

increases by a factor of two every year and a half or so.

Quantum Algorithm: An algorithm designed specifically to be performed by a quantum
computer using quantum logic. Quantum algorithms exploit the phenomena of superposi-
tion and entanglement to solve problems more rapidly than classical computer algorithms
can. Examples of quantum algorithms include Shor’s algorithm for factoring large num-
bers and breaking public-key cryptosystems, Grover’s algorithm for searching databases,

quantum simulation, the adiabatic algorithm, etc.

Quantum Bit: A bit registered by a quantum-mechanical system such as an atom, photon,
or nuclear spin. A quantum bit, or ‘qubit,” has the property that it can exist in a quantum

superposition of the states 0 and 1.
Qubit: A quantum bit.

Quantum Communication Channel: A communication channel that transmits quantum
bits. The most common communication channel is the bosonic channel, which transmits
information using light, sound, or other substances whose elementary excitations consist

of bosons (photons for light, phonons for sound).
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Quantum Computer: A computer that operates on quantum bits to perform quantum
algorithms. Quantum computers have the feature that they can preserve quantum super-

positions and entanglement.

Quantum Cryptography: A cryptographic technique that encodes information on quantum
bits. Quantum cryptography uses the fact that measuring quantum systems typically dis-
turbs them to implement cryptosystems whose security is guaranteed by the laws of physics.
Quantum key distribution (QKD) is a quantum cryptographic technique for distributing

secret keys.

Quantum Error-Correcting Code: An error-correcting code that corrects for the effects
of noise on quantum bits. Quantum error-correcting codes can correct for the effect of

decoherence (q.v.) as well as for conventional bit-flip errors.
Quantum Information: Information that is stored on qubits rather than on classical bits.

Quantum Mechanics: The branch of physics that describes how matter and energy behave
at their most fundamental scales. Quantum mechanics is famously weird and counterinu-

itive.

Quantum Weirdness: A catch-all term for the strange and counterintuitive aspects of
quantum mechanics. Well-known instances of quantum weirdness include Schrédinger’s cat
(g.v.), the Einstein-Podolsky-Rosen thought experiment, violations of Bell’s inequalities,

and the Greenberger-Horne-Zeilinger experiment.

Rewversible Logic: Logical operations that do not discard information. Quantum computers

operate using reversible logic.

Schréodinger’s Cat: A famous example of quantum weirdness. A thought experiment pro-
posed by Erwin Schrodinger, in which a cat is put in a quantum superposition of being

alive and being dead. Not sanctioned by the Society for Prevention of Cruelty to Animals.

Second Law of Thermodynamics: The second law of thermodynamics states that entropy
does not increase. An alternative formulation of the second law states that it is not possible

to build an eternal motion machine.



Superposition: The defining feature of quantum mechanics which allows particles such as
electrons to exist in two or more places at once. Quantum bits can exist in superpositions

of 0 and 1 simultaneously.

Teleportation: A form of quantum communication that uses pre-existing entanglement and

classical communication to send quantum bits from one place to another.



I. Definition of the Subject and its Importance

Quantum mechanics is the branch of physics that describes how systems behave at
their most fundamental level. The theory of information processing studies how infor-
mation can be transferred and transformed. Quantum information science, then, is the
theory of communication and computation at the most fundamental physical level. Quan-
tum computers store and process information at the level of individual atoms. Quantum

communication systems transmit information on individual photons.

Over the past half century, the wires and logic gates in computers have halved in
size every year and a half, a phenomenon known as Moore’s law. If this exponential rate
of miniaturization continues, then the components of computers should reach the atomic
scale within a few decades. Even at current (2008) length scales of a little larger than one
hundred nanometers, quantum mechanics plays a crucial role in governing the behavior of
these wires and gates. As the sizes of computer components press down toward the atomic
scale, the theory of quantum information processing becomes increasingly important for
characterizing how computers operate. Similarly, as communication systems become more
powerful and efficient, the quantum mechanics of information transmission becomes the

key element in determining the limits of their power.

Miniaturization and the consequences of Moore’s law are not the primary reason for
studying quantum information, however. Quantum mechanics is weird: electrons, photons,
and atoms behave in strange and counterintuitive ways. A single electron can exist in
two places simultaneously. Photons and atoms can exhibit a bizarre form of correlation
called entanglement, a phenomenon that Einstein characterized as spukhafte Fernwirkung,
or ‘spooky action at a distance.” Quantum weirdness extends to information processing.
Quantum bits can take on the values of 0 and 1 simultaneously. Entangled photons can
be used to teleport the states of matter from one place to another. The essential goal
of quantum information science is to determine how quantum weirdness can be used to
enhance the capabilities of computers and communication systems. For example, even a
moderately sized quantum computer, containing a few tens of thousands of bits, would be
able to factor large numbers and thereby break cryptographic systems that have until now
resisted the attacks of even the largest classical supercomputers [1]. Quantum computers
could search databases faster than classical computers. Quantum communication systems
allow information to be transmitted in a manner whose security against eavesdropping is

guaranteed by the laws of physics.



Prototype quantum computers that store bits on individual atoms and quantum com-
munication systems that transmit information using individual photons have been built
and operated. These prototypes have been used to confirm the predictions of quantum
information theory and to explore the behavior of information processing at the most
microscopic scales. If larger, more powerful versions of quantum computers and commu-
nication systems become readily available, they will offer considerable enhancements over
existing computers and communication systems. In the meanwhile, the field of quantum
information processing is constructing a unified theory of how information can be registered

and transformed at the fundamental limits imposed by physical law.
The remainder of this article is organized as follows:

IT A review of the history of ideas of information, computation, and the role of informa-
tion in quantum mechanics is presented.

III The formalism of quantum mechanics is introduced and applied to the idea of quantum
information.

IV Quantum computers are defined and their properties presented.

V The effects of noise and errors are explored.

VI The role of quantum mechanics in setting limits to the capacity of communication
channels is delineated. Quantum cryptography is explained.

VII Implications are discussed.

This review of quantum information theory is mathematically self-contained in the sense
that all the necessary mathematics for understanding the quantum effects treated in detail
here are contained in the introductory sectiion on quantum mechanics. By necessity, not
all topics in quantum information theory can be treated in detail within the confines of
this article. We have chosen to treat a few key subjects in more detail: in the case of
other topics we supply references to more complete treatments. The standard reference on
quantum information theory is the text by Nielsen and Chuang [1], to which the reader
may turn for in depth treatments of most of the topics covered here. One topic that is left
largely uncovered is the broad field of quantum technologies and techniques for actually
building quantum computers and quantum communication systems. Quantum technologies
are rapidly changing, and no brief review like the one given here could adequately cover

both the theoretical and the experimental aspects of quantum information processing.



II. Introduction: History of Information and Quantum Mechanics

Information

Quantum information processing as a distinct, widely recognized field of scientific
inquiry has arisen only recently, since the early 1990s. The mathematical theory of infor-
mation and information processing dates to the mid-twentieth century. Ideas of quantum
mechanics, information, and the relationships between them, however, date back more
than a century. Indeed, the basic formulae of information theory were discovered in the
second half of the nineteenth century, by James Clerk Maxwell, Ludwig Boltzmann, and
J. Willard Gibbs [2]. These statistical mechanicians were searching for the proper math-
ematical characterization of the physical quantity known as entropy. Prior to Maxwell,
Boltzmann, and Gibbs, entropy was known as a somewhat mysterious quantity that re-
duced the amount of work that steam engines could perform. After their work established
the proper formula for entropy, it became clear that entropy was in fact a form of infor-
mation — the information required to specify the actual microscopic state of the atoms
in a substance such as a gas. If a system has W possible states, then it takes log, W bits
to specify one state. Equivalently, any system with distinct states can be thought of as
registering information, and a system that can exist in one out of W equally likely states
can register log, W bits of information. The formula, S = klog W, engraved on Boltz-
mann’s tomb, means that entropy S is proportional to the number of bits of information
registered by the microscopic state of a system such as a gas. (Ironically, this formula
was first written down not by Boltzmann, but by Max Planck [3], who also gave the first
numerical value 1.38 x 10723 joule/K for the constant k. Consequently, k is called Planck’s
constant in early works on statistical mechanics [2]. As the fundamental constant of quan-
tum mechanics, h = 6.6310734 joule seconds, on which more below, is also called Planck’s
constant, k was renamed Boltzmann’s constant and is now typically written kp.)

Although the beginning of the information processing revolution was still half a cen-
tury away, Maxwell, Boltzmann, Gibbs, and their fellow statistical mechanicians were well
aware of the connection between information and entropy. These researchers established
that if the probability of the ¢’th microscopic state of some system is p;, then the entropy
of the system is S = kp(—)_,p;Inp;). The quantity >, p; Inp; was first introduced by
Boltzmann, who called it H. Boltzmann’s famous H-theorem declares that H never in-
creases [2]. The H-theorem is an expression of the second law of thermodynamics, which

declares that S = —kg H never decreases. Note that this formula for S reduces to that on
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Boltzmann’s tomb when all the states are equally likely, so that p; = 1/W.

Since the probabilities for the microscopic state of a physical system depend on the
knowledge possessed about the system, it is clear that entropy is related to information.
The more certain one is about the state of a system—the more information one possesses
about the system— the lower its entropy. As early as 1867, Maxwell introduced his famous
‘demon’ as a hypothetical being that could obtain information about the actual state of a
system such as a gas, thereby reducing the number of states W compatible with the infor-
mation obtained, and so decreasing the entropy [4]. Maxwell’s demon therefore apparently
contradicts the second law of thermodynamics. The full resolution of the Maxwell’s demon
paradox was not obtained until the end of the twentieth century, when the theory of the

physics of information processing described in this review had been fully developed.

Quantum Mechanics

For the entropy, S, to be finite, a system can only possess a finite number W of
possible states. In the context of classical mechanics, this feature is problematic, as even
the simplest of classical systems, such as a particle moving along a line, possesses an
infinite number of possible states. The continuous nature of classical mechanics frustrated
attempts to use the formula for entropy to calculate many physical quantities such as the
amount of energy and entropy in the radiation emitted by hot objects, the so-called ‘black
body radiation.” Calculations based on classical mechanics suggested the amount of energy
and entropy emitted by such objects should be infinite, as the number of possible states of
a classical oscillator such as a mode of the electromagnetic field was infinite. This problem
is known as ‘the ultraviolet catastrophe.” In 1901, Planck obtained a resolution to this
problem by suggesting that such oscillators could only possess discrete energy levels [3]:
the energy of an oscillator that vibrates with frequency v can only come in multiples of
hv, where h is Planck’s constant defined above. Energy is quantized. In that same paper,
as noted above, Planck first wrote down the formula S = klog W, where W referred to
the number of discrete energy states of a collection of oscillators. In other words, the
very first paper on quantum mechanics was about information. By introducing quantum
mechanics, Planck made information/entropy finite. Quantum information as a distinct
field of inquiry may be young, but its origins are old: the origin of quantum information
coincides with the origin of quantum mechanics.

Quantum mechanics implies that nature is, at bottom, discrete. Nature is digital.

After Planck’s advance, Einstein was able to explain the photo-electric effect using quantum
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mechanics [5]. When light hits the surface of a metal, it kicks off electrons. The energy
of the electrons kicked off depends only on the frequency v of the light, and not on its
intensity. Following Planck, FEinstein’s interpretation of this phenomenon was that the
energy in the light comes in chunks, or quanta, each of which possesses energy hr. These
quanta, or particles of light, were subsequently termed photons. Following Planck and
Einstein, Niels Bohr used quantum mechanics to derive the spectrum of the hydrogen

atom [6].

In the mid nineteen-twenties, Erwin Schrédinger and Werner Heisenberg put quantum
mechanics on a sound mathematical footing [7-8]. Schrédinger derived a wave equation —
the Schrodinger equation — that described the behavior of particles. Heisenberg derived
a formulation of quantum mechanics in terms of matrices, matrix mechanics, which was
subsequently realized to be equivalent to Schrodinger’s formulation. With the precise
formulation of quantum mechanics in place, the implications of the theory could now be

explored in detail.

It had always been clear that quantum mechanics was strange and counterintuitive:
Bohr formulated the phrase ‘wave-particle duality’ to capture the strange way in which
waves, like light, appeared to be made of particles, like photons. Similarly, particles, like
electrons, appeared to be associated with waves, which were solutions to Schrodinger’s
equation. Now that the mathematical underpinnings of quantum mechanics were in place,
however, it became clear that quantum mechanics was downright weird. In 1935, Einstein,
together with his collaborators Boris Podolsky and Nathan Rosen, came up with a thought
experiment (now called the EPR experiment after its originators) involving two photons
that are correlated in such a way that a measurement made on one photon appears in-
stantaneously to affect the state of the other photon [9]. Schrédinger called this form of
correlation ‘entanglement.” Einstein, as noted above, referred to it as ‘spooky action at
a distance.” Although it became clear that entanglement could not be used to transmit
information faster than the speed of light, the implications of the EPR thought experiment
were so apparently bizarre that Einstein felt that it demonstrated that quantum mechan-
ics was fundamentally incorrect. The EPR experiment will be discussed in detail below.
Unfortunately for Einstein, when the EPR experiment was eventually performed, it con-
firmed the counterintuitive predictions of quantum mechanics. Indeed, every experiment
ever performed so far to test the predictions of quantum mechanics has confirmed them,

suggesting that, despite its counterintuitive nature, quantum mechanics is fundamentally
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correct.

At this point, it is worth noting a curious historical phenomenon, which persists to
the present day, in which a famous scientist who received his or her Nobel prize for work
in quantum mechanics, publicly expresses distrust or disbelief in quantum mechanics.
Einstein is the best known example of this phenomenon, but more recent examples exist,
as well. The origin of this phenomenon can be traced to the profoundly counterintuitive
nature of quantum mechanics. Human infants, by the age of a few months, are aware that
objects — at least, large, classical objects like toys or parents — cannot be in two places
simultaneously. Yet in quantum mechanics, this intuition is violated repeatedly. Nobel
laureates typically possess a powerful sense of intuition: if Einstein is not allowed to trust
his intuition, then who is? Nonetheless, quantum mechanics contradicts their intuition
just as it does everyone else’s. Einstein’s intuition told him that quantum mechanics was
wrong, and he trusted that intuition. Meanwhile, scientists who are accustomed to their
intuitions being proved wrong may accept quantum mechanics more readily. One of the
accomplishments of quantum information processing is that it allows quantum weirdness
such as that found in the EPR experiment to be expressed and investigated in precise
mathematical terms, so we can discover exactly how and where our intuition goes wrong.

In the 1950’s and 60’s, physicists such as David Bohm, John Bell, and Yakir Aharonov,
among others, investigated the counterintuitive aspects of quantum mechanics and pro-
posed further thought experiments that threw those aspects in high relief [10-12]. When-
ever those thought experiments have been turned into actual physical experiments, as in
the well-known Aspect experiment that realized Bell’s version of the EPR experiment [13],
the predictions of quantum mechanics have been confirmed. Quantum mechanics is weird
and we just have to live with it.

As will be seen below, quantum information processing allows us not only to express
the counterintuitive aspects of quantum mechanics in precise terms, it allows us to ex-
ploit those strange phenomena to compute and to communicate in ways that our classical

intuitions would tell us are impossible. Quantum weirdness is not a bug, but a feature.

Computation

Although rudimentary mechanical calculators had been constructed by Pascal and
Leibnitz, amongst others, the first attempts to build a full-blown digital computer also
lie in the nineteenth century. In 1822, Charles Babbage conceived the first of a series

of mechanical computers, beginning with the fifteen ton Difference Engine, intended to
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calculate and print out polynomial functions, including logarithmic tables. Despite con-
siderable government funding, Babbage never succeeded in building a working difference.
He followed up with a series of designs for an Analytical Engine, which was to have been
powered by a steam engine and programmed by punch cards. Had it been constructed,
the analytical engine would have been the first modern digital computer. The mathemati-
cian Ada Lovelace is frequently credited with writing the first computer program, a set of

instructions for the analytical engine to compute Bernoulli numbers.

In 1854, George Boole’s An investigation into the laws of thought laid the conceptual
basis for binary computation. Boole established that any logical relation, no matter how
complicated, could be built up out of the repeated application of simple logical operations
such as AND, OR, NOT, and COPY. The resulting ‘Boolean logic’ is the basis for the

contemporary theory of computation.

While Schrodinger and Heisenberg were working out the modern theory of quantum
mechanics, the modern theory of information was coming into being. In 1928, Ralph Hart-
ley published an article, ‘The Transmission of Information,” in the Bell System Technical
Journal [14]. In this article he defined the amount of information in a sequence of n sym-
bols to be nlog S, where S is the number of symbols. As the number of such sequences is
S™, this definition clearly coincides with the Planck-Boltzmann formula for entropy, taking
W =Sm.

At the same time as Einstein, Podolsky, and Rosen were exploring quantum weirdness,
the theory of computation was coming into being. In 1936, in his paper “On Computable
Numbers, with an Application to the Entscheidungsproblem,” Alan Turing extended the
earlier work of Kurt Godel on mathematical logic, and introduced the concept of a Turing
machine, an idealized digital computer [15]. Claude Shannon, in his 1937 master’s thesis,
“A Symbolic Analysis of Relay and Switching Circuits,” showed how digital computers
could be constructed out of electronic components [16]. (Howard Gardner called this work,

“possibly the most important, and also the most famous, master’s thesis of the century.”)

The Second World War provided impetus for the development of electronic digital
computers. Konrad Zuse’s Z3, built in 1941, was the first digital computer capable of
performing the same computational tasks as a Turing machine. The Z3 was followed by the
British Colossus, the Harvard Mark I, and the ENIAC. By the end of the 1940s, computers
had begun to be built with a stored program or ‘von Neumann’ architecture (named after

the pioneer of quantum mechanics and computer science John von Neumann), in which the
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set of instructions — or program — for the computer were stored in the computer’s memory
and executed by a central processing unit.

In 1948, Shannon published his groundbreaking article, “A Mathematical Theory of
Communication,” in the Bell Systems Journal [17]. In this article, perhaps the most influ-
ential work of applied mathematics of the twentieth century (following the tradition of his
master’s thesis), Shannon provided the full mathematical characterization of information.
He introduced his colleague, John Tukey’s word, ‘bit,” a contraction of ‘binary digit,” to
describe the fundamental unit of information, a distinction between two possibilities, True
or False, Yes or No, 0 or 1. He showed that the amount of information associated with a set
of possible states ¢, each with probability p;, was uniquely given by formula — . p; log, p;.
When Shannon asked von Neumann what he should call this quantity, von Neumann is
said to have replied that he should call it H, ‘because that’s what Boltzmann called it.’
(Recalling the Boltzmann’s orginal definition of H, given above, we see that von Neumann
had evidently forgotten the minus sign.)

It is interesting that von Neumann, who was one of the pioneers both of quantum me-
chanics and of information processing, apparently did not consider the idea of processing
information in a uniquely quantum-mechanical fashion. Von Neumann had many things
on his mind, however — game theory, bomb building, the workings of the brain, etc. — and
can be forgiven for failing to make the connection. Another reason that von Neumann
may not have thought of quantum computation was that, in his research into computa-
tional devices, or ‘organs,” as he called them, he had evidently reached the impression
that computation intrinsically involved dissipation, a process that is inimical to quantum
information processing [18]. This impression, if von Neumann indeed had it, is false, as

will now be seen.

Reversible computation

The date of Shannon’s paper is usually taken to be the beginning of the study of
information theory as a distinct field of inquiry. The second half of the twentieth century
saw a huge explosion in the study of information, computation, and communication. The
next step towards quantum information processing took place in the early 1960s. Until
that point, there was an impression, fostered by von Neumann amongst others, that com-
putation was intrinsically irreversible: according to this view, information was necessarily
lost or discarded in the course of computation. For example, a logic gate such as an AND

gate takes in two bits of information as input, and returns only one bit as output: the
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output of an AND gate is 1 if and only if both inputs are 1, otherwise the output is 0.
Because the two input bits cannot be reconstructed from the output bits, an AND gate
is irreversible. Since computations are typically constructed from AND, OR, and NOT
gates (or related irreversible gates such as NAN D, the combination of an AN D gate and
a NOT gate), computations were thought to be intrinsically irreversible, discarding bits
as they progress.

In 1960, Rolf Landauer showed that because of the intrinsic connection between in-
formation and entropy, when information is discarded in the course of a computation,
entropy must be created [19]. That is, when an irreversible logic gate such as an AND
gate is applied, energy must be dissipated. So far, it seems that von Neumann could be
correct. In 1963, however, Yves Lecerf showed that Turing Machines could be constructed
in such a way that all their operations were logically reversible [20]. The trick for making
computation reversible is record-keeping: one sets up logic circuits in such a way that the
values of all bits are recorded and kept. To make an AN D gate reversible, for example,
one adds extra circuitry to keep track of the values of the input to the AND gate. In
1973, Charles Bennett, unaware of Lecerf’s result, rederived it, and, most importantly,
constructed physical models of reversible computation based on molecular systems such
as DNA [21]. Ed Fredkin, Tommaso Toffoli, Norman Margolus, and Frank Merkle subse-
quently made significant contributions to the study of reversible computation [22].

Reversible computation is important for quantum information processing because the
laws of physics themselves are reversible. It’s this underlying reversibility that is responsi-
ble for Landauer’s principle: whenever a logically irreversible process such as an AN D gate
takes place, the information that is discarded by the computation has to go somewhere. In
the case of an conventional, transistor-based AN D gate, the lost information goes into en-
tropy: to operate such an AN D gate, electrical energy must be dissipated and turned into
heat. That is, once the AN D gate has been performed, then even if the logical circuits of
the computer no longer record the values of the inputs to the gate, the microscopic motion
of atoms and electrons in the circuit effectively ‘remember’ what the inputs were. If one
wants to perform computation in a uniquely quantum-mechanical fashion, it is important

to avoid such dissipation: to be effective, quantum computation should be reversible.
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Quantum computation

In 1980, Paul Benioff showed that quantum mechanical systems such as arrays of
spins or atoms could perform reversible computation in principle [23]. Benioff mapped the
operation of a reversible Turing machine onto the a quantum system and thus exhibited
the first quantum-mechanical model of computation. Benioff’s quantum computer was
no more computationally powerful than a conventional classical Turing machine, however:
it did not exploit quantum weirdness. In 1982, Richard Feynman proposed the first non-
trivial application of quantum information processing [24]. Noting that quantum weirdness
made it hard for conventional, classical digital computers to simulate quantum systems,
Feynman proposed a ‘universal quantum simulator’ that could efficiently simulate other
quantum systems. Feynman’s device was not a quantum Turing machine, but a sort of
quantum analog computer, whose dynamics could be tuned to match the dynamics of the

system to be simulated.

The first model of quantum computation truly to embrace and take advantage of
quantum weirdness was David Deutsch’s quantum Turing machine of 1985 [25]. Deutsch
pointed out that a quantum Turing machine could be designed in such a way as to use
the strange and counterintuitive aspects of quantum mechanics to perform computations
in ways that classical Turing machines or computers could not. In particular, just as
in quantum mechanics it is acceptable (and in many circumstances, mandatory) for an
electron to be in two places at once, so in a quantum computer, a quantum bit can take
on the values 0 and 1 simultaneously. One possible role for a bit in a computer is as part a
program, so that 0 instructs the computer to ‘do this’ and 1 instructs the computer to ‘do
that.” If a quantum bit that takes on the values 0 and 1 at the same time is fed into the
quantum computer as part of a program, then the quantum computer will ‘do this’ and ‘do
that’ simultaneously, an effect that Deutsch termed ‘quantum parallelism.” Although it
would be years before applications of quantum parallelism would be presented, Deutsch’s

paper marks the beginning of the formal theory of quantum computation.

For almost a decade after the work of Benioff, Feynman, and Deutsch, quantum com-
puters remained a curiosity. Despite the development of a few simple algorithms (described
in greater detail below) that took advantage of quantum parallelism, no compelling ap-
plication of quantum computation had been discovered. In addition, the original models
of quantum computation were highly abstract: as Feynman noted [24], no one had the

slightest notion of how to build a quantum computer. Absent a ‘killer ap,” and a physical
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implementation, the field of quantum computation languished.

That languor dissipated rapidly with Peter Shor’s discovery in 1994 that quantum
computers could be used to factor large numbers [26]. That is, given the product r of
two large prime numbers, a quantum computer could find the factors p and ¢ such that
pq = r. While it might not appear so instantaneously, solving this problem is indeed a
‘killer ap.” Solving the factoring problem is the key to breaking ‘public-key’ cryptosystems.
Public-key cryptosystems are a widely used method for secure communication. Suppose
that you wish to buy something from me over the internet, for example. I openly send
you a public key consisting of the number r. The public key is not a secret: anyone may
know it. You use the public key to encrypt your credit card information, and send me that
encrypted information. To decrypt that information, I need to employ the ‘private keys’
p and g. The security of public-key cryptography thus depends on the factoring problem
being hard: to obtain the private keys p and ¢ from the public key r, one must factor the
public key.

If quantum computers could be built, then public-key cryptography was no longer se-
cure. This fact excited considerable interest among code breakers, and some consternation
within organizations, such as security agencies, whose job it is to keep secrets. Compound-
ing this interest and consternation was the fact that the year before, in 1993, Lloyd had
shown how quantum computers could be built using techniques of electromagnetic reso-
nance together with ‘off-the shelf’ components such as atoms, quantum dots, and lasers
[27]. In 1994, Ignacio Cirac and Peter Zoller proposed a technique for building quantum
computers using ion traps [28]. These designs for quantum computers quickly resulted in
small prototype quantum computers and quantum logic gates being constructed by David
Wineland [29], and Jeff Kimble [30]. In 1996, Lov Grover discovered that quantum comput-
ers could search databases significantly faster than classical computers, another potentially
highly useful application [31]. By 1997, simple quantum algorithms had been performed
using nuclear magnetic resonance based quantum information processing [32-34]. The field

of quantum computation was off and running.

Since 1994, the field of quantum computation has expanded dramatically. The decade
between the discovery of quantum computation and the development of the first applica-
tions and implementations saw only a dozen or so papers published in the field of quantum
computation. As of the date of publication of this article, it is not uncommon for a dozen

papers on quantum computation to be posted on the Los Alamos preprint archive (ArXiv)
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every day.

Quantum communication

While the idea of quantum computation was not introduced until 1980, and not fully
exploited until the mid-1990s, quantum communication has exhibited a longer and steadier
advance. By the beginning of the 1960s, J.P. Gordon [35] and Lev Levitin [36] had begun
to apply quantum mechanics to the analysis of the capacity of communication channels. In
1973, Alexander Holevo derived the capacity for quantum mechanical channels to transmit
classical information [37] (the Holevo-Schumacher-Westmoreland theorem [38-39]). Be-
cause of its many practical applications, the so-called ‘bosonic’ channel has received a
great deal of attention over the years [40]. Bosonic channels are quantum communica-
tion channels in which the medium of information exchange consists of bosonic quantum
particles, such as photons or phonons. That is, bosonic channels include communication
channels that use electromagnetic radiation, from radio waves to light, or sound.

Despite many attempts, it was not until 1993 that Horace Yuen and Masanao Ozawa
derived the capacity of the bosonic channel, and their result holds only in the absence of
noise and loss [41] The capacity of the bosonic channel in the presence of loss alone was
not derived until 2004 [42], and the capacity of this most important of channels in the
presence of noise and loss is still unknown [43].

A second use of quantum channels is to transmit quantum information, rather than
classical information. The requirements for transmitting quantum information are more
stringent than those for transmatting classical information. To transmit a classical bit,
one must end up sending a 0 or a 1. To transmit a quantum bit, by contrast, one must
also faithfully transmit states in which the quantum bit registers 0 and 1 simultaneously.
The quantity which governs the capacity of a channel to transmit quantum information is
called the coherent information [44-45]. A particularly intriguing method of transmitting
quantum information is teleportation [46]. Quantum teleportation closely resembles the
teleportation process from the television series Star Trek. In Star Trek, entities to be
teleported enter a special booth, where they are measured and dematerialized. Information
about the composition of the entities is then sent to a distant location, where the entities
rematerialize.

Quantum mechanics at first seems to forbid Trekkian teleportation, for the simple rea-
son that it is not possible to make a measurement that reveals an arbitrary unknown quan-

tum state. Worse yet, any attempt to reveal that state is likely to destroy it. Nonetheless,
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if one adds just one ingredient to the protocol, quantum teleportation is indeed possible.
That necessary ingredient is entanglement.

In quantum teleportation, an entity such as a quantum bit is to be teleported from
Alice at point A to Bob at point B. For historical reasons, in communication protocols the
sender of information is called Alice and the receiver is called Bob; an eavesdropper on
the communication process is called Eve. Alice and Bob possess prior entanglement in the
form of a pair of Einstein-Podolsky-Rosen particles. Alice performs a suitable measurement
(described in detail below) on the qubit to be teleported together with her EPR particle.
This measurement destroys the state of the particle to be teleported (‘dematerializing’ it),
and yields two classical bits of information, which Alice sends to Bob over a conventional
communication channel. Bob then performs a transformation on his EPR particle. The
transformation Bob performs is a function of the information he receives from Alice: there
are four possible transformations, one for each of the four possible values of the two bits
he has received. After the Bob has performed his transformation of the EPR particle, the
state of this particle is now guaranteed to be the same as that of the original qubit that
was to be teleported.

Quantum teleportation forms a integral part of quantum communication and of quan-
tum computation. Experimental demonstrations of quantum teleportation have been per-
formed with photons and atoms as the systems whose quantum states are to be teleported
[47-48]. At the time of the writing of this article, teleportation of larger entities such as

molecules, bacteria, or human beings remains out of reach of current quantum technology.

Quantum cryptography

A particularly useful application of the counterintuitive features of quantum mechanics
is quantum cryptography [49-51]. Above, it was noted that Shor’s algorithm would allow
quantum computers to crack public-key cryptosystems. In the context of code breaking,
then, quantum information processing is a disruptive technology. Fortunately, however,
if quantum computing represents a cryptographic disease, then quantum communication
represents a cryptographic cure. The feature of quantum mechanics that no measurement
can determine an unknown state, and that almost any measurement will disturb such a
state, can be turned into a protocol for performing quantum cryptography, a method of
secret communication whose security is guaranteed by the laws of physics.

In the 1970s, Stephen Wiesner developed the concept of quantum conjugate coding,

in which information can be stored on two conjugate quantum variables, such as position
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and momentum, or linear or helical polarization [49]. In 1984, Charles Bennett and Gilles
Brassard turned Wiesner’s quantum coding concept into a protocol for quantum cryptog-
raphy [50]: by sending suitable states of light over a quantum communication channel,
Alice and Bob can build up a shared secret key. Since any attempt of Eve to listen in on
their communication must inevitably disturb the states sent, Alice and Bob can determine
whether Eve is listening in, and if so, how much information she has obtained. By suitable
privacy amplification protocols, Alice and Bob can distill out secret key that they alone
share and which the laws of physics guarantee is shared by no one else. In 1990 Artur Ek-
ert, unaware of Wiesner, Bennett, and Brassard’s work, independently derived a protocol
for quantum cryptography based on entanglement [51].

Commercial quantum cryptographic systems are now available for purchase by those
who desire secrecy based on the laws of physics, rather than on how hard it is to factor
large numbers. Such systems represent the application of quantum information processing

that is closest to every day use.

The future

Quantum information processing is currently a thriving scientific field, with many
open questions and potential applications. Key open questions include,

e Just what can quantum computers do better than classical computers? They can
apparently factor large numbers, search databases, and simulate quantum systems better
than classical computers. That list is quite short, however. What is the full list of problems
for which quantum computers offer a speed up?

e How can we build large scale quantum computers? Lots of small scale quantum
computers, with up to a dozen bits, have been built and operated. Building large scale
quantum computers will require substantial technological advances in precision construc-
tion and control of complex quantum systems. While advances in this field have been
steady, we’re still far away from building a quantum computer that could break existing
public-key cryptosystems.

e What are the ultimate physical limits to communication channels? Despite many
decades of effort, fundamental questions concerning the capacity of quantum communica-
tion channels remain unresolved.

Quantum information processing is a rich stream with many tributaries in the fields
of engineering, physics, and applied mathematics. Quantum information processing inves-

tigates the physical limits of computation and communication, and it devises methods for
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reaching closer to those limits, and someday perhaps to attain them.
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IIT Quantum Mechanics

In order to understand quantum information processing in any non-trivial way, some
math is required. As Feynman said, “ ... it is impossible to explain honestly the beauties
of the laws of nature in a way that people can feel, without their having some deep
understanding of mathematics. I am sorry, but this seems to be the case.” [52] The
counterintuitive character of quantum mechanics makes it even more imperative to use
mathematics to understand the subject. The strange consequences of quantum mechanics
arise directly out of the underlying mathematical structure of the theory. It is important
to note that every bizarre and weird prediction of quantum mechanics that has been
experimentally tested has turned out to be true. The mathematics of quantum mechanics
is one of the most trustworthy pieces of science we possess.

Luckily, this mathematics is also quite simple. To understand quantum information
processing requires only a basic knowledge of linear algebra, that is, of vectors and matrices.
No calculus is required. In this section a brief review of the mathematics of quantum
mechanics is presented, along with some of its more straightforward consequences. The
reader who is familiar with this mathematics can safely skip to the following sections on

quantum information. Readers who desire further detail are invited to consult reference

[1].

Qubits

The states of a quantum system correspond to vectors. In a quantum bit, the quantum

0), and the quantum logic state

. . . 1
logic state 0 corresponds to a two-dimensional vector, (

). It is customary to write these vectors in the so-called

= (g)m=(}) )

A general state for a qubit, 1), corresponds to a vector (g) = «|0) + §|1), where o and

1 corresponds to the vector ((1)

‘Dirac bracket’ notation:

[ are complex numbers such that |a|? + |8|> = 1. The requirement that the amplitude
squared of the components of a vector sum to one is called ‘normalization.” Normalization
arises because amplitudes squared in quantum mechanics are related to probabilities. In
particular, suppose that one prepares a qubit in the state |¢)), and then performs a mea-
surement whose purpose is to determine whether the qubit takes on the value 0 or 1 (such

measurments will be discussed in greater detail below). Such a measurement will give the
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outcome 0 with probability |a|?, and will give the outcome 1 with probability |3|?. These
probabilities must sum to one.
The vectors |0), |1), [¢) are column vectors: we can also define the corresponding row

vectors,
(Of=(1 0),{1=(0 1), (¥l=(a f). (2)

Note that creating the row vector (1| involves both transposing the vector and taking
the complex conjugate of its entries. This process is called Hermitian conjugation, and is
denoted by the superscript T, so that (¢ = [1)T.

The two-dimensional, complex vector space for a qubit is denoted C2. The reason for
introducing Dirac bracket notation is that this vector space, like all the vector spaces of

quantum mechanics, possesses a natural inner product, defined in the usual way by the

product of row vectors and column vectors. Suppose |¢) = (g) and |¢) = ( g), so that

(¢| = (7 &) . The row vector (¢| is called a ‘bra’ vector, and the column vector |¢) is called

a ‘ket’ vector. Multiplied together, these vectors form the inner product, or ‘bracket,’
_ o[« _ <
oy =7 5) () =av+ 08 ®)

Note that (1[1)) = |a|? + |3?| = 1. The definition of the inner product (3) turns the vector
space for qubits C? into a ‘Hilbert space,” a complete vector space with inner product.
(Completeness means that any convergent sequence of vectors in the space attains a limit
that itself lies in the space. Completeness is only an issue for infinite-dimensional Hilbert
spaces and will be discussed no further here.)

We can now express probabilities in terms of brackets: [(0]1))|? = |a]? = po is the
probability that a measurement that distinguishes 0 and 1, made on the state |¢), yields
the output 0. Similarly, [(1|¢))|* = |3|*> = p; is the probability that the same measurement

yields the output 1. Another way to write these probabilities is to define the two ‘projectors’

n=(y 0)=(y) 0 »=100
P = (8 g’) _ ((1)) (0 1)=|1)(1].

(4)

Note that



Similarly, P2 = P;. A projection operator or projector P is defined by the condition
P2? = P. Written in terms of these projectors, the probabilities pg, p1 can be defined as

po = (Y|Poly), p1= (|P[Y). (6)

Note that (0|1) = (1]0) = 0: the two states |0) and |1) are orthogonal. Since any vector
|} = a]0) + §|1) can be written as a linear combination, or superposition, of |0) and |1),
{]0),|1)} make up an orthornormal basis for the Hilbert space C?. From the probabilistic
interpretation of brackets, we see that orthogonality implies that a measurement that
distinguishes between 0 and 1, made on the state |0), will yield the output 0 with probability
1 (po = 1), and will never yield the output 1 (p; = 0). In quantum mechanics, orthogonal

states are reliably distinguishable.

Higher dimensions

The discussion above applied to qubits. More complicated quantum systems lie in
higher dimensional vector spaces. For example, a ‘qutrit’ is a quantum system with three
distinguishable states |0),|1),|2) that live in the three-dimensional complex vector space
C3. All the mechanisms of measurement and definitions of brackets extend to higher
dimensional systems as well. For example, the distinguishability of the three states of the
qutrit implies (i|j) = J;;. Many of the familiar systems of quantum mechanics, such as a
free particle or a harmonic oscillator, have states that live in infinite dimensional Hilbert
spaces. For example, the state of a free particle corresponds to a complex valued function
¥ (x) such that [*°_1(z)¢(z)dz = 1. The probability of finding the particle in the interval
between x = a and = = b is then ff Y(x)p(z)dz. Infinite dimensional Hilbert spaces
involve subtleties that, fortunately, rarely impinge upon quantum information processing

except in the use of bosonic systems as in quantum optics [40].

Matrices

Quantum mechanics is an intrinsically linear theory: transformations of states are
represented by matrix multiplication. (Nonlinear theories of quantum mechanics can be
constructed, but there is no experimental evidence for any intrinsic nonlinearity in quantum
mechanics.) Consider the set of matrices U such that UTU = Id, where Id is the identity
matrix. Such a matrix is said to be ‘unitary.” (For matrices on infinite-dimensional Hilbert

spaces, i.e., for linear operators, unitarity also requires UUT = Id.) If we take a normalized
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vector |1}, (]1p) = 1, and transform it by multiplying it by U, so that [¢)') = U|), then

we have
W') = WUTU ) = (plp) = 1. (7)

That is, unitary transformations U preserve the normalization of vectors. Equation (7)
can also be used to show that any U that preserves the normalization of all vectors |¢)) is
unitary. Since to be given a physical interpretation in terms of probabilities, the vectors of
quantum mechanics must be normalized, the set of unitary transformations represents the
set of ‘legal’ transformations of vectors in Hilbert space. (Below, we’ll see that when one
adds an environment with which qubits can interact, then the set of legal transformations
can be extended.) Unitary transformations on a single qubit make up the set of two-by-two

unitary matrices U(2).

Spin and other observables

A familiar quantum system whose state space is represented by a qubit is the spin
1/2 particle, such as an electron or proton. The spin of such a particle along a given axis
can take on only two discrete values, ‘spin up,” with angular momentum #%/2 about that
axis, or ‘spin down,” with angular momentum —h/2. Here, & is Planck’s reduced constant:
h = h/2m = 1.05457 10~3*joule — sec. It is conventional to identify the state | ), spin up
along the z-axis, with |0), and the state | |), spin up along the z-axis, with |1). In this
way, the spin of an electron or proton can be taken to register a qubit.

Now that we have introduced the notion of spin, we can introduce an operator or
matrix that corresponds to the measurement of spin. Let P; = | 1)(T | be the projector
onto the state | 1), and let P, = | |)(] | be the projector onto the state | |. The matrix,

or ‘operator’ corresponding to spin 1/2 along the z-axis is then

h h(1 0 h
Iz—i(PT_PL)—E(O _1)—5%7 (8)
where 0, = (1) _01 is called the z Pauli matrix. In what way does I, correspond to

spin along the z-axis? Suppose that one starts out in the state 1)) = «| 1)+ | |) and then
measures spin along the z-axis. Just as in the case of measuring 0 or 1, with probability
p1 = |a|? one obtains the result T, and with probability p; = |3]* one obtains the result |.

The ezpectation value for the angular momentum along the z-axis is then

(L) = p1(n/2) + p (=h/2) = (P|L:[4). (9)
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That is, the expectation value of the observable quantity corresponding to spin along the
z-axis is given by taking the bracket of the state |i)) with the operator I, corresponding
to that observable.

In quantum mechanics, every observable quantity corresponds to an operator. The op-
erator corresponding to an observable with possible outcome values {a}is A =) ala)(a| =
> o 0Py, where |a) is the state with value a and P, = |a)(a| is the projection operator cor-
responding to the outcome a. Note that since the outcomes of measurements are real
numbers, A" = A: the operators corresponding to observables are Hermitian. The states
{la)} are, by definition, distinguishable and so make up an orthonormal set. From the
definition of A one sees that Ala) = ala). That is, the different possible outcomes of
the measurement are eigenvalues of A, and the different possible outcome states of the
measurement are eigenvectors of A.

If more than one state |a); corresponds to the outcome a, then A = )" aP,, where
P, =), |a)i{a| is the projection operator onto the eigenspace corresponding to the ‘degen-
erate’ eigenvalue a. Taking, for the moment, the case of non-degenerate eigenvalues, then
the expectation value of an observable A in a particular state |x) = >, xa|a) is obtained

by bracketing the state about the corresponding operator:
(4) = (A =) Ixal’a =) paa, (10)
a a

where p, = |xa|? is the probability that the measurement yields the outcome a.

Above, we saw that the operator corresponding to spin along the z-axis was I, =
(h/2)o,. What then are the operators corresponding to spin along the z- and y-axes?
They are given by I, = (h/2)o, and I, = (h/2)o,, where o, and o, are the two remaining

Pauli spin matrices out of the trio:

0 ) )

By the prescription for obtaining expectation values (10), for an initial state |x) the ex-

pectation values of spin along the z-axis and spin along the y-axis are

(L) = (x| Lz]x)> (Ly) = (x| Lylx)- (12)

The eigenvectors of I,0, and I,,0, are also easily described. The eigenvector of

1/v2

I, 0, corresponding to spin up along the z-axis is | —) = ( 1 \/5) , while the eigenvector
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_ (V2

of I,,0, corresponding to spin down along the z-axis is | «) = <_1/\/§) Note that
these eigenvectors are orthogonal and normalized — they make up an orthonormal set.
It’s easy to verify that, o,| 1) = +1| 1), and o,| |) = —1| |), so the eigenvalues of o,
are £1. The eigenvalues of I, = (h/2)o, are +h/2, the two different possible values of
angular momentum corresponding to spin up or spin down along the z-axis. Similarly, the
eigenvector of I, o, corresponding to spin up along the y-axis is |®) = (1;%), while
the eigenvector of I, o, corresponding to spin down along the y-axis is |®) = (—Z{)/Eﬁ)
(Here, in deference to the right-handed coordinate system that we are implicitly adopting,
® corresponds to an arrow heading away from the viewer, and ® corresponds to an arrow

heading towards the viewer.)

Rotations and SU(2)

The Pauli matrices 0,,0,,0, play a crucial role not only in characterizing the mea-
surement of spin, but in generating rotations as well. Because of their central role in
describing qubits in general, and spin in particular, several more of their properties are

elaborated here. Clearly, o; = JI : Pauli matrices are Hermitian. Next, note that
02202:02=Id:(1 O). (13)

T

7

unitary. Next, defining the commutator of two matrices A and B to be [A, B] = AB— BA,

Since 0; = o], and 02 = Id, it’s also the case that ojoi = Id: that is, the Pauli matrices are
it is easy to verify that [0, 0] = 2i0,. Cyclic permutations of this identity also hold, e.g.,
02, 04] = 2i0y.

Now introduce the concept of a rotation. The operator e~ *?/2)%= corresponds to a
rotation by an angle 6 about the z-axis. The analogous operators with x replaced by y or z
are expressions for rotations about the y- or z- axes. Exponentiating matrices may look at
first strange, but exponentiating Pauli matrices is significantly simpler. Using the Taylor
expansion for the matrix exponential, e? = Id + A + A%/2! + A3/3! + ..., and employing
the fact that sz = Id, one obtains

e~ 01295 = ¢os(0/2)1d — isin(6/2)a;. (14)

It is useful to verify that the expression for rotations (14) makes sense for the states

we have defined. For example, rotation by 7 about the z-axis should take the state | T),
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spin z up, to the state | |), spin z down. Inserting § = 7 and j = x in equation (14), we
find that the operator corresponding to this rotation is the matrix —io,. Multiplying | T)

by this matrix, we obtain

i 1) = —i ((1) é) (é) — i ((1)) — il 1). (15)

The rotation does indeed take | T) to | |), but it also introduces an overall phase of —i.
What does this overall phase do? The answer is Nothing! Or, at least, nothing

observable. Overall phases cannot change the expectation value of any observable. Suppose

that we compare expectation values for the state |x) and for the state |x') = e*®|x) for

some observable corresponding to an operator A. We have

(XIAlx) = (x|e™"?4e|x) = (X'|Alx). (16)

Overall phases are undetectable. Keeping the undetectability of overall phases in mind,
it is a useful excercise to verify that other rotations perform as expected. For example, a
rotation by /2 about the z-axis takes |®), spin up along the y-axis, to | 1), together with
an overall phase.

Once rotation about the x, y, and z axes have been defined, it is straightforward to
construct rotations about any axis. Let i = (tg, ty,tz), t2 + Lz +2 =1, be a unit vector
along the ¢ direction in ordinary three-dimensional space. Define o0; = 1,0, + tyoy + 1,0,
to be the generalized Pauli matrixz associated with the unit vector i. It is easy to verify
that o; behaves like a Pauli matrix, e.g., 02 = Id. Rotation by 6 about the i axis then
corresponds to an operator e (/27 = cos(0/2)Id—isin(f/2)o;. Once again, it is a useful
excercise to verify that such rotations behave as expected. For example, a rotation by 7
about the (1/v/2,0,1/+/2) axis should ‘swap’ | 1) and | —), up to some phase.

The set of rotations of the form e—0/29:

forms the group SU(2), the set of complex
2 by 2 unitary matrices with determinant equal to 1. It is instructive to compare this
group with the ‘conventional’ group of rotations in three dimensions, SO(3). SO(3) is the
set of real 3 by 3 matrices with orthonormal rows/columns and determinant 1. In SO(3),
when one rotates a vector by 27, the vector returns to its original state: a rotation by 27
corresponds to the 3 by 3 identity matrix. In SU(2), rotating a vector by 27 corresponds
to the transformation —Id: in rotating by 2, the vector acquires an overall phase of —1.
As will be seen below, the phase of —1, while unobservable for single qubit rotations, can

be, and has been observed in two-qubit operations. To return to the original state, with
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no phase, one must rotate by 4w. A macroscopic, classical version of this fact manifests
itself when one grasps a glass of water firmly in the palm of one’s hand and rotates one’s
arm and shoulder to rotate the glass without spilling it. A little experimentation with this
problem shows that one must rotate glass and hand around twice to return them to their

initial orientation.

Why quantum mechanics?

Why is the fundamental theory of nature, quantum mechanics, a theory of complex
vector spaces? No one knows for sure. One of the most convincing explanations came
from Aage Bohr, the son of Niels Bohr and a Nobel laureate in quantum mechanics in
his own right [53]. Aage Bohr pointed out that the basic mathematical representation of
symmetry consists of complex vector spaces. For example, while the apparent symmetry
group of rotations in three dimensional space is the real group SO(3), the actual underlying
symmetry group of space, as evidenced by rotations of quantum-mechanical spins, is SU(2):
to return to the same state, one has to go around not once, but twice. It is a general feature
of complex, continuous groups, called ‘Lie groups’ after Sophus Lie, that their fundamental
representations are complex. If quantum mechanics is a manifestation of deep, underlying
symmetries of nature, then it should come as no surprise that quantum mechanics is a

theory of transformations on complex vector spaces.

Density matrices

The review of quantum mechanics is almost done. Before moving on to quantum
information processing proper, two topics need to be covered. The first topic is how to
deal with uncertainty about the underlying state of a quantum system. The second topic
is how to treat two or more quantum systems together. These topics turn out to possess
a strong connection which is the source of most counterintuitive quantum effects.

Suppose that don’t know exactly what state a quantum system is in. Say, for example,
it could be in the state |0) with probability pg or in the state |1) with probability p;. Note
that this state is not the same as a quantum superposition, ,/po|0) 4+ /p1|1), which is a
definite state with spin oriented in the x — z plane. The expectation value of an operator

A when the underlying state possesses the uncertainty described is
(A) = po(0]A|0) + p1(1|A[1) = trpA, (17)

where p = po|0)(0| + p1|1)(1] is the density matriz corresponding to the uncertain state.

28



The density matrix can be thought of as the quantum mechanical analogue of a probability
distribution.

Density matrices were developed to provide a quantum mechanical treatment of sta-
tistical mechanics. A famous density matrix is that for the canonical ensemble. Here, the
energy state of a system is uncertain, and each energy state |E;) is weighted by a prob-
ability p; = e Ei/*8T /7 where Z = Y, e Fi/kT ig the partition function. Z is needed
to normalize the proabilities {p;} so that ). p; = 1. The density matrix for the canonical
ensemble is then pc = (1/2) Y, e Fi/keT|E;)(E;|. The expectation value of any operator,
e.g., the energy operator H (for ‘Hamiltonian’) is then given by (H) = trpc H.

Multiple systems and tensor products

To describe two or more systems requires a formalism called the tensor product.
The Hilbert space for two qubits is the space C? ® C?, where ® is the tensor product.
C? ® C? is a four-dimensional space spanned by the vectors [0) ®]0), |0) ®1),]1) ®|0), |1) ®
|1). (To save space these vectors are sometimes written |0)|0),]0)|1),[1)]0), |1)|1), or even
more compactly, [00),]01),|10),|11). Care must be taken, however, to make sure that this
notation is unambiguous in a particular situation.) The tensor product is multilinear: in
performing the tensor product, the distributive law holds. That is, if [¢0) = «|0) + §|1),
and |¢) = 7v]0) + §|1), then

) @ |¢) =(al0) + 5[1)) @ (7]0) + 6[1)) a8)
=a]0) ® [0) + ad]0) @ [1) + Bv|1) ® |0) + 5[1) @ |1).
A tensor is a thing with slots: the key point to keep track of in tensor analysis is which
operator or vector acts on which slot. It is often useful to label the slots, e.g., [¥)1 ® |¢)2
is a tensor product vector in which [¢) occupies slot 1 and |¢) occupies slot 2.
One can also define the tensor product of operators or matrices. For example, ol ® o2
is a tensor product operator with o, in slot 1 and o, in slot 2. When this operator acts

on a tensor product vector such as |1))1 ® |¢)2, the operator in slot 1 acts on the vector in

that slot, and the operator in slot 2 acts on the vector in that slot:

(02 ® 02)([9)1 @ [9)2) = (02]¥)1) ® (07]9)2)- (19)

The no-cloning theorem
Now that tensor products have been introduced, one of the most famous theorems of

quantum information — the no-cloning theorem — can immediately be proved [54]. Classical
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information has the property that it can be copied, so that 0 — 00 and 1 — 11. How about
quantum information? Does there exist a procedure that allows one to take an arbitrary,
unknown state |¢) to 1)) ® |[¢)? Can you clone a quantum? As the title to this section
indicates, the answer to this question is No.

Suppose that you could clone a quantum. Then there would exist a unitary operator
Uc that would take the state

) ©10) = Ucl) ®[0) = [¢) © |4), (20)

for any initial state |¢). Consider another state |¢). Since Uc is supposed to clone any
state, we have then we would also have Uc|¢) ® |0) = [¢) ® |¢). If Uc exists, then, the
following holds for any states [¢), |¢):

(@le) = (1(8] @ 2(0)(|¢)1 @ [0)2)

18l @ 2(0)(ULU)([¥)1 @ 10)2)
18] @ 2(0[UL) (Ue )1 @ |0)2)
1(8] @2 (9])([¥)1 @ [1)2)
(1{olY)1)(2(@]¥)2)
= (p|v)?,

(21)

(
(
(
(

where we have used the fact that Uc is unitary so that U(T;UC = Id. So if cloning is
possible, then (¢|y)) = (¢|)? for any two vectors |¢p) and |¢). But this is impossible, as
it implies that (¢|¢) equals either 0 or 1 for all |¢), |¢), which is certainly not true. You
can’t clone a quantum.

The no-cloning theorem has widespread consequences. It is responsible for the efficacy
of quantum cryptography, which will be discussed in greater detail below. Suppose that
Alice sends a state |1)) to Bob. Eve wants to discover what state this is, without Alice
or Bob uncovering her eavesdropping. That is, she would like to make a copy of |¢)
and send the original state |i) to Bob. The no-cloning theorem prevents her from doing
so: any attempt to copy [¢) will necessarily perturb the state. An ‘optimal cloner’ is a
transformation that does the best possible job of cloning, given that cloning is impossible
[55].

Reduced density matrices
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Suppose that one makes a measurement corresponding to an observable A; on the
state in slot 1. What operator do we take the bracket of to get the expectation value? The
answer is A; ® Idy: we have to put the identity in slot 2. The expectation value for this

measurement for the state 1)1 ® |¢)2 is then

1Y © 2(9|A1 @ Tda|0)1 @ |d)2 = 1(Y[Ar[Y)1 @ 2(dIda|p)2 = 1(Y[Ar])r.  (22)

Here we have used the rule that operators in slot 1 act on vectors in slot 1. Similarly,
the operators in slot 2 act on vectors in slot 2. As always, the key to performing tensor
manipulations is to keep track of what is in which slot. (Note that the tensor product of
two numbers is simply the product of those numbers.)

In ordinary probability theory, the probabilities for two sets of events labeled by ¢ and
j is given by a joint probability distribution p(ij). The probabilities for the first set of
events on their own is obtained by averaging over the second set: p(i) = > ; p(ij) is the
marginal distribution for the first set of events labeled by 7. In quantum mechanics, the
analog of a probability distribution is density matrix. Two systems 1 and 2 are described
by a joint density matrix pio, and system 1 on its own is described by a ‘reduced’ density
matrix p;.

Suppose that systems 1 and 2 are in a state described by a density matrix

pra= Y pirgyli (@' @ 15)2(5, (23)

i jj'
where {|i)1} and {|j)2} are orthonormal bases for systems 1 and 2 respectively. As in the
previous paragraph, the expectation value of a measurement made on pi5 alone is given
by trp12(A; ® Idy). Another way to write such expectation values is to define the reduced

density matrix,

pr=1trapra = Y pirjir|i)1 (@] @2 (4']5)2
ii'j5'

= pirgilin (@'

i’

(24)

Equation (24) defines the partial trace trp over system 2. In other words, if pj2 has
components, {p;i/j;- }, then reduced density matrix p; = trgp12 has components {ZJ Pii’ 5 }-
The expectation value of a measurement A made on the first system alone is then simply
(A) = trp1 A. Just as in ordinary probability theory, where the marginal distribution for

system 1 is obtained by averaging over the state of system 2, so in quantum mechanics
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the reduced density matrix that describes system 1 is obtained by tracing over the state

of system 2.

Entanglement

One of the central features of quantum information processing is entanglement. Entan-
glement is a peculiarly quantum-mechanical form of correlation between quantum systems,
that has no classical analogue. Entanglement lies at the heart of the various speedups and
enhancements that quantum information processing offers over classical information pro-
cessing.

A pure state |1))12 for two systems 1 and 2 is entangled if the reduced density matrix
for either system taken on its own has non-zero entropy. In particular, the reduced density
matrix for system 1 is p; = tropia, where p1o = |¥)12(¢0|. The entropy of this density
matrix is S(p1) = —trp; log, p1. For pure states, the entropy of p; is equal to the entropy
of po and is a good measure of the degree of entanglement between the two systems.
S(p1) = S(p2) measures the number of ‘e-bits’ of entanglement between systems 1 and 2.

A mixed state pio for 1 and 2 is entangled if it is not separable. A density matrix
is separable if it can be written pjo = > i Dj ,0{ ® pg. In other words, a separable state is
one that can be written as a classical mixture of uncorrelated states. The correlations in
a separable state are purely classical.

Entanglement can take a variety of forms and manifestations. The key to understand-
ing those forms is the notion of Local Operations and Classical Communication (LOCC)
[56]. Local operations such as unitary transformations and measurement, combined with
classical communication, can not, on their own, create entanglement. If one state can be
transformed into another via local operations and classical communication, then the first
state is ‘at least as entangled’ as the second. LOCC can then be used to categorize the
different forms of entanglement.

Distillable entanglement is a form of entanglement that can be transformed into pure-
state entanglement [57]. Systems 1 and 2 posses d qubits worth of distillable entanglement
if local operations and classical communication can transform their state into a pure state
that contains d e-bits (possibly with some leftover ‘junk’ in a separate quantum register).
Systems that are non-separable, but that possess no distillable entanglement are said to
possess bound entanglement [58].

The entanglement of formation for a state pio is equal to the minimum number of e-

bits of pure-state entanglement that are required to create p;s using only local operations
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and classical control [59]. The entanglement of formation of pi5 is greater than or equal
to p12’s distillable entanglement. A variety of entanglement measures exist. Each one is
useful for different purposes. Squashed entanglement, for example, plays an important role
in quantum cryptography [60]. (Squashed entanglement is a notion of entanglement based
on conditional information.)

One of the most interesting open questions in quantum information theory is the def-
inition of entanglement for marti-partite systems consisting of more than two subsystems.
Here, even in the case of pure states, no unique definition of entanglement exists.

Entanglement plays a key role in quantum computation and quantum communication.
Before turning to those fields, however, it is worth while investigating the strange and

counterintuitive features of entanglement.

Quantum weirdness
Entanglement is the primary source of what for lack of a better term may be called
‘quantum weirdness.” Consider the two-qubit state
1
T2

This state is called the ‘singlet’ state: if the two qubits correspond to two spin 1/2 particles,

[¥)12 (10)1 ® [1)2 = [1)1]0)2). (25)

as described above, so that |0) is the spin z up state and |1) is the spin z down state, then
the singlet state is the state with zero angular momentum. Indeed, rewriting |1)12 in terms

of spin as

1
)12 = Eﬂ Di@] 2= Dl 1)) (26)

one sees that if one makes a measurement of spin z, then if the first spin has spin z up,
then the second spin has spin z down, and vice versa.
If one decomposes the state in terms of spin along the z-axis, | —) = (1/v/2)(] 1)+] 1)),
| ) = (1/v2)(| 1) = | 1)), then |¢)12 can be rewritten
1

)12 = E(l —n®| )2 - ®[=)) (27)

Similarly, rewriting in terms of spin along the y-axis, we obtain
1
V2

where |®) is the state with spin up along the y-axis and |®) is the state with spin down

|¥)12 (19)1]©)2 — [O)1]®)2), (28)

along the y-axis. No matter what axis one decomposes the spin about, if the first spin has
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spin up along that axis then the second spin has spin down along that axis, and vice versa.
The singlet state has angular momentum zero about every axis.

So far, this doesn’t sound too strange. The singlet simply behaves the way a state
with zero angular momentum should: it is not hard to see that it is the unique two-spin
state with zero angular momentum about every axis. In fact, the singlet state exhibits lots

of quantum weirdness. Look at the reduced density matrix for spin 1:

p1 = trapra = traf)12(Y] = %(I DT+ 1D | = 1d/2. (29)

That is, the density matrix for spin 1 is in a completely indefinite, or ‘mixed’ state: nothing
is known about whether it is spin up or spin down along any axis. Similarly, spin 2 is in
a completely mixed state. This is already a little strange. The two spins together are in
a definite, ‘pure’ state, the singlet state. Classically, if two systems are in a definite state,
then each of the systems on its own is in a definite state: the only way to have uncertainty
about one of the parts is to have uncertainty about the whole. In quantum mechanics this
is not the case: two systems can be in a definite, pure state taken together, while each
of the systems on its own is in an indefinite, mixed state. Such systems are said to be
entangled with eachother.

Entanglement is a peculiarly quantum form of correlation. Two spins in a singlet
state are highly correlated (or, more precisely, anticorrelated): no matter what axis one
measures spin along, one spin will be found to have the opposite spin of the other. In itself,
that doesn’t sound so bad, but when one makes a measurement on one spin, something
funny seems to happen. Both spins start out in a completely indefinite state. Now one
chooses to make a measurement of spin 1 along the z-axis. Suppose that one gets the
result, spin up. As a result of the measurement, spin 2 is now in a definite state, spin
down along the z axis. If one had chosen to make a measurement of spin 1 along the
x-axis, then spin 2 would also be put in a definite state along the z-axis. Somehow, it
seems as if one can affect the state of spin 2 by making a measurement of spin 1 on its
own. This is what Einstein called ‘spooky action at a distance.’

In fact, such measurements involve no real action at a distance, spooky or otherwise.
If one could really act on spin 2 by making a measurement on spin 1, thereby changing
spin 2’s state, then one could send information instantaneously from spin 1 to spin 2 by
measuring spin 1 alone. Such instantaneous transmission of information would violate
special relativity and give rise to all sorts of paradoxical capabilities, such as the ability to

travel backwards in time. Luckily, it is easy to see that it is impossible to send information
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superluminally using entanglement: no matter what one does to spin 1, the outcomes of
measurements on spin 2 are unaffected by that action. In particular, operations on spin
1 correspond to operators of the form A; ® Idy, while operations on spin 2 correspond to

operators of the form Id; ® By. The commutator between such operators is
[A1 ® Ida, Idy ® Bs] = A1 ® By — A1 @ By = 0. (30)

Since they commute, it doesn’t matter if one does something to spin 1 first, and then
measures spin 2, or if one measures spin 2 first and then does something to spin 1: the
results of the measurement will be the same. That is, nothing one does to spin 1 on its
own can effect spin 2.

Nonetheless, entanglement is counterintuitive. One’s classical intuition would like to
believe that before the measurement, the system to be measured is in a definite state, even
if that definite state is unknown. Such a definite state would constitute a ‘hidden variable,’
an unknown, classical value for the measured variable. Entanglement implies that such
hidden variables can’t exist in any remotely satisfactory form. The spin version of the EPR
effect described above is due to David Bohm [61]. Subsequently, John Bell proposed a set
of relations, the ‘Bell inequalities,” that a hidden variable theory should obey [62]. Bell’s
inequalities are expressed in terms of the probabilities for the outcomes of measurements
made on the two spins along different axes.

Suppose that each particle indeed has a particular value of spin along each axis before
it is measured. Designate a particle that has spin up along the x-axis, spin down along the
y axis, and spin up along the z-axis by (z+,y—, z+). Designate other possible orientations
similarly. In a collection of particles, let N(z+,y—, z+) be the number of particles with
orientations (x+,y—, z+). Clearly, N(z+,y—) = N(z+,y—, 2+) + N(z+,y—, 2—). Now,
in a collection of measurements made on pairs of particles, originally in a singlet state,
let #(x1+,y2—) be the number of measurements that give the result spin up along the
x-axis for particle 1, and spin down along the y-axis for particle 2. Bell showed that for
classical particles that actually possess definite values of spin along different axes before
measurement, #(x1+,yo+) < #(x1+, 22+) + #(y1—, 22— ), together with inequalities that
are obtained by permuting axes and signs.

Quantum mechanics decisively violates these Bell inequalities: in entangled states like
the singlet state, particles simply do not possess definite, but unknown, values of spin
before they are measured. Bell’s inequalities have been verified experimentally on numer-

ous occasions [13], although not all exotic forms of hidden variables have been eliminated.
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Those that are consistent with experiment are not very aesthetically appealing however
(depending, of course, on one’s aesthetic ideals). A stronger set of inequalities than Bell’s
are the CHSH inequalities (Clauser-Horne-Shimony-Holt), which have also been tested in
numerous venues, with the predictions of quantum mechanics confirmed each time [63].
One of weirdest violation of classical intuition can be found in the so-called GHZ experi-
ment, named after Daniel Greenberger, Michael Horne, and Anton Zeilinger [64].

To demonstrate the GHZ paradox, begin with the three-qubit state

) = (1/vV2)(| 111) = | LL1)) (31)

(note that in writing this state we have suppressed the tensor product ® signs, as mentioned
above). Prepare this state four separate times, and make four distinct measurements. In
the first measurement measure o, on the first qubit, o, on the second qubit, and o, on
the third qubit. Assign the value +1 to the result, spin up along the axis measured, and
—1 to spin down. Multiply the outcomes together. Quantum mechanics predicts that the
result of this multplication will always be +1, as can be verified by taking the expectation
value (x|o, ® o ®og|x) of the operator o), ® o7 ® oy that corresponds to making the three
individual spin measurements and multiplying their results together.

In the second measurement measure o, on the first qubit, o, on the second qubit,
and o, on the third qubit. Multiply the results together. Once again, quantum mechanics
predicts that the result will be +1. Similarly, in the third measurement measure o, on
the first qubit, o, on the second qubit, and o, on the third qubit. Multiply the results
together to obtain the predicted result +1. Finally, in the fourth measurement measure o,
on all three qubits and multiply the results together. Quantum mechanics predicts that
this measurement will give the result (x|ol ® 02 @ o3|x) = —1.

So far, these predictions may not seem strange. A moment’s reflection, however, will
reveal that the results of the four GHZ experiments are completely incompatible with
any underlying assignment of values of 1 to the spin along the x- and y-axes before the
measurement. Suppose that such pre-measurement values existed, and that these are the
values revealed by the measurements. Looking at the four measurements, each consist-
ing of three individual spin measurements, one sees that each possible spin measurement
appears twice in the full sequence of twelve individual spin measurements. For example,
measurement of spin 1 along the x-axis occurs in the first of the four three-fold measure-
ments, and in the last one. Similarly, measurement of spin 3 along the 3-axis occurs in

the first and second three-fold measurements. The classical consequence of each individual
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measurement occurring twice is that the product of all twelve measurements should be
+1. That is, if measurement of o in the first measurement yields the result —1, it should
also yield the result —1 in the fourth measurement. The product of the outcomes for o}
then gives (—1) x (—1) = +1; similarly, if o} takes on the value +1 in both measurements,
it also contributes (+1) x (+1) = +1 to the overall product. So if each spin possesses a
definite value before the measurement, classical mechanics unambiguously predicts that
the product of all twelve individual measurements should be +1.

Quantum mechanics, by contrast, unambiguously predicts that the product of all
twelve individual measurements should be —1. The GHZ experiment has been performed
in a variety of different quantum-mechanical systems, ranging from nuclear spins to photons
[65-66]. The result: the predictions of classical mechanics are wrong and those of quantum

mechanics are correct. Quantum weirdness triumphs.
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IV. Quantum computation

Quantum mechanics has now been treated in sufficient detail to allow us to approach
the most startling consequence of quantum weirdness: quantum computation. The central
counterintuitive feature of quantum mechanics is quantum superposition: unlike a classical
bit, which either takes on the value 0 or the value 1, a quantum bit in the superposition
state «|0) + 3|1) takes on the values 0 and 1 simultaneously. A quantum computer is a
device that takes advantage of quantum superposition to process information in ways that
classical computers can’t. A key feature of any quantum computation is the way in which
the computation puts entanglement to use: just as entanglement plays a central role in
the quantum paradoxes discussed above, it also lies at the heart of quantum computation.

A classical digital computer is a machine that can perform arbitrarily complex logical
operations. When you play a computer game, or operate a spread sheet, all that is going
on is that your computer takes in the information from your joy stick or keyboard, encodes
that information as a sequence of zeros and ones, and then performs sequences of simple
logical operations one that information. Since the work of George Boole in the first half
of the nineteenth century, it is known that any logical expression, no matter how involved,
can be broken down into sequences of elementary logical operations such as NOT, AND,
OR and COPY . In the context of computation, these operations are called ‘logic gates’:
a logic gates takes as input one or more bits of information, and produces as output one or
more bits of information. The output bits are a function of the input bits. A NOT gate,
for example, takes as input a single bit, X, and returns as output the flipped bit, NOT X,
so that 0 — 1 and 1 — 0. Similarly, an AN D gate takes in two bits X,Y as input, and
returns the output X AND Y. X AND Y is equal to 1 when both X and Y are equal to
1; otherwise it is equal to 0. That is, an AND gate takes 00 — 0, 01 — 0, 10 — 0, and
11 — 1. An OR gate takes X,Y to 1 if either X or Y is 1, and to 0 if both X and Y are 0,
so that 00 — 0, 01 — 1, 10 — 1, and 11 — 1. A COPY gate takes a single input, X, and
returns as output two bits X that are copies of the input bit, so that 0 — 00 and 1 — 11.

All elementary logical operations can be built up from NOT, AND,OR, and COPY .
For example, implication can be written A — B= A OR (NOT B), since A — B is false

if and only if A is true and B is false. Consequently, any logical expression, e.g.,
( (A AND (NOT B)) OR (C AND (NOT A)) AND (NOT(C OR B))), (32)

can be evaluated using NOT, AND,OR, and COPY gates, where COPY gates are used
to supply the different copies of A,B and C' that occur in different places in the expres-
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sion. Accordingly, {NOT,AND,OR,COPY} is said to form a ‘computationally univer-
sal” set of logic gates. Simpler computationally universal sets of logic gates also exist, e.g.
{NAND,COPY}, where X NANDY = NOT(X ANDY).

Reversible logic

A logic gate is said to be reversible if its outputs are a one-to-one function of its inputs.
NOT is reversible, for example: since X = NOT(NOT X), NOT is its own inverse. AN D
and OR are not reversible, as the value of their two input bits cannot be inferred from
their single output. COPY is reversible, as its input can be inferred from either of its
outputs.

Logical reversibility is important because the laws of physics, at bottom, are reversible.
Above, we saw that the time evolution of a closed quantum system (i.e., one that is not in-
teracting with any environment) is given by a unitary transformation: [¢)) — |[¢') = U|).
All unitary transformations are invertible: U~1 = UT, so that |¢) = UTU|y) = UT|y').
The input to a unitary transformation can always be obtained from its output: the time
evolution of quantum mechanical systems is one-to-one. As noted in the introduction,
in 1961, Rolf Landauer showed that the underlying reversibility of quantum (and also of
classical) mechanics implied that logically irreversible operations such as AN D necessarily
required physical dissipation [19]: any physical device that performs an AN D operation
must possess additional degrees of freedom (i.e., an environment) which retain the in-
formation about the actual values of the inputs of the AND gate after the irreversible
logical operation has discarded those values. In a conventional electronic computer, those
additional degrees of freedom consist of the microscopic motions of electrons, which, as
Maxwell and Boltzmann told us, register large amounts of information.

Logic circuits in contemporary electronic circuits consist of field effect transistors,
or FETs, wired together to perform NOT,AND,OR and COPY operations. Bits are
registered by voltages: a FET that is charged at higher voltage registers a 1, and an
uncharged FET at Ground voltage registers a 0. Bits are erased by connecting the FET
to Ground, discharging them and restoring them to the state 0. When such an erasure or
resetting operation occurs, the underlying reversibility of the laws of physics insure that
the microscopic motions of the electrons in the Ground still retain the information about
whether the FET was charged or not, i.e., whether the bit before the erasure operation
registered 1 or 0. In particular, if the bit registered 1 initially, the electrons in Ground will

be slightly more energetic than if it registered 0. Landauer argued that any such operation
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that erased a bit required dissipation of energy kg7 In 2 to an environment at temperature

T, corresponding to an increase in the environment’s entropy of kg In 2.

Landauer’s principle can be seen to be a straightforward consequence of the micro-
scopic reversibility of the laws of physics, together with the fact that entropy is a form of
information — information about the microscopic motions of atoms and molecules. Because
the laws of physics are reversible, any information that resides in the logical degrees of free-
dom of a computer at the beginning of a computation (i.e., in the charges and voltages
of FETs) must still be present at the end of the computation in some degrees of freedom,
either logical or microscopic. Note that physical reversibility also implies that if informa-
tion can flow from logical degrees of freedom to microscopic degrees of freedom, then it
can also flow back again: the microscopic motions of electrons cause voltage fluctuations

in FETs which can give rise to logical errors. Noise is necessary.

Because AND,OR, NAN D are not logically reversible, Landauer initially concluded
that computation was necessarily dissipative: entropy had to increase. As is often true
in the application of the second law of thermodynamics, however, the appearance of irre-
versibility does not always imply the actual fact of irreversibility. In 1963, Lecerf showed
that digital computation could always be performed in a reversible fashion [20]. Unaware
of Lecerf’s work, in 1973 Bennett rederived the possibility of reversible computation [21].
Most important, because Bennett was Landauer’s colleague at IBM Watson laboratories,
he realized the physical significance of embedding computation in a logically reversible

context. As will be seen, logical reversibility is essential for quantum computation.

A simple derivation of logically reversible computation is due to Fredkin, Toffoli, and
Margolus [22]. Unaware of Bennett’s work, Fredkin constructed three-input, three-output
reversible logic gates that could perform NOT, AND,OR, and COPY operations. The
best-known example of such a gate is the Toffoli gate. The Toffoli gate takes in three inputs,
X,Y, and Z, and returns three outputs, X’,Y’ and Z’. The first two inputs go through
unchanged, so that X’ = X, Y’ =Y. The third output is equal to the third input, unless
both X and Y are equal to 1, in which case the third output is the NOT of the third input.
That is, when either X or Y is 0, Z/ = Z, and when both X and Y are 1, Z/ = NOT Z.
(Another way of saying the same thing is to say that Z/ = Z XOR (X AND Y), where
XOR is the exclusive OR operation whose output is 1 when either one of its inputs is 1,
but not both. That is, XOR takes 00 — 0, 01 — 1, 10 — 1, 11 — 0.) Because it performs
a NOT operation on Z controlled on whether both X and Y are 1, a Toffoli gate is often
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called a controlled-controlled-NOT (CCNOT) gate.
Figure 1: a Toffoli gate

To see that CCNOT gates can be wired together to perform NOT, AND,OR, and
COPY operations, note that when one sets the first two inputs X and Y both to the
value 1, and allows the input Z to vary, one obtains Z’ = NOT Z. That is, supplying
additional inputs allows a CCNOT to perform a NOT operation. Similarly, setting the
input Z to 0 and allowing X and Y to vary yields Z' = X AND Y. OR and COPY (not
to mention NAN D) can be obtained by similar methods. So the ability to set inputs to
predetermined values, together with ability to apply CCNOT gates allows one to perform
any desired digital computation.

Because reversible computation is intrinsically less dissipative than conventional, ir-
reversible computation, it has been proposed as a paradigm for constructing low power
electronic logic circuits, and such low power circuits have been built and demonstrated
[67]. Because additional inputs and wires are required to perform computation reversibly,
however, such circuits are not yet used for commercial application. As the miniaturization
of the components of electronic computers proceeds according to Moore’s law, however,
dissipation becomes an increasingly hard problem to solve, and reversible logic may become

commercially viable.

Quantum computation

In 1980, Benioff proposed a quantum-mechanical implementation of reversible com-
putation [23]. In Benioff’s model, bits corresponded to spins, and the time evolution of
those spins was given by a unitary transformation that performed reversible logic opera-
tions. (In 1986, Feynman embedded such computation in a local, Hamiltonian dynamics,
corresponding to interactions between groups of spins [68].) Benioff’s model did not take
into account the possibility of putting quantum bits into superpositions as an integral part
of the computation, however. In 1985, Deutsch proposed that the ordinary logic gates
of reversible computation should be supplemented with intrinsically quantum-mechanical
single qubit operations [25]. Suppose that one is using a quantum-mechanical system
to implement reversible computations using CCNOT gates. Now add to the ability to
prepare qubits in desired states, and to perform CCNOT gates, the ability to perform
single-qubit rotations of the form e~*%9/2 as described above. Deutsch showed that the

resulting set of operations allowed universal quantum computation. Not only could such a
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computer perform any desired classical logical transformation on its quantum bits; it could
perform any desired unitary transformation U whatsoever.

Deutsch pointed out that a computer endowed with the ability to put quantum bits
into superpositions and to perform reversible logic on those superpositions could compute in
ways that classical computers could not. In particular, a classical reversible computer can
evaluate any desired function of its input bits: (z1...2,,0...0) = (21 ... 2y, f(x1...24)),
where x; represents the logical value, 0 or 1, of the ith bit, and f is the desired function. In
order to preserve reversibility, the computer has been supplied with an ‘answer’ register,
initially in the state 00...0, into which to place the answer f(z;...x,). In a quantum
computer, the input bits to any transformation can be in a quantum superposition. For
example, if each input bit is in an equal superposition of 0 and 1, (1/v/2)(|0) 4 |1)), then

all n qubits taken together are in the superposition

1
57z (100-.0) +100. 1) .+ 11 1) = S Joem). (33)

If such a superposition is supplied to a quantum computer that performs the transformation

x1...xy — f(x1...2,), then the net effect is to take the superposition

27}/2 Z ]xl...xn>\00...0)—>2n—1/2 Z |x1 . o) f(z1 ... ). (34)

T1,.0,Tn=0,1 T1,en=0,1
That is, even though the quantum computer evaluates the function f only once, it evaluates
it on every term in the superposition of inputs simultaneously, an effect which Deutsch
termed ‘quantum parallelism.’

At first, quantum parallelism might seem to be spectacularly powerful: with only
one function ‘call,” one performs the function on 2" different inputs. The power of quan-
tum parallelism is not so easy to tease out, however. For example, suppose one makes a
measurement on the output state in equation (33) in the {|0),|1)} basis. The result is a
randomly selected input-output pair, (1 ...z, f(x1...2,)). One could have just as easily
obtained such a pair by feeding a random input string into a classical computer that eval-
uates f. As will now be seen, the secret to orchestrating quantum computations that are
more powerful than classical compuations lies in arranging quantum interference between
the different states in the superposition of equation (34).

The word ‘orchestration’ in the previous sentence was used for a reason. In quantum

mechanics, states of physical systems correspond to waves. For example, the state of an
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electron is associated with a wave that is the solution of the Schrodinger equation for that
electron. Similarly, in a quantum computer, a state such as |z ...z,)|f(x1...2,)) is as-
sociated with a wave that is the solution of the Schrodinger equation for the underlying
quantum degrees of freedom (e.g., electron spins or photon polarizations) that make up
the computers quantum bits. The waves of quantum mechanics, like waves of water, light,
or sound, can be superposed on eachother to construct composite waves. A quantum com-
puter that performs a conventional reversible computation, in which its qubits only take
on the values 0 or 1 and are never in superpositions «|0) + 3|1), can be thought of as an
analogue of a piece of music like a Gregorian chant, in which a single, unaccompanied voice
follows a prescribed set of notes. A quantum computer that performs many computations
in quantum parallel is analogous to a symphony, in which many lines or voices are super-
posed to create chords, counterpoint, and harmony. The quantum computer programmer
is the composer who writes and orchestrates this quantum symphony: her job is to make

that counterpoint reveal meaning that is not there in each of the voices taken separately.

Deutsch-Jozsa algorithm

Let’s examine a simple example, due to David Deutsch and Richard Jozsa, in which
the several ‘voices’ of a quantum computer can be orchestrated to solve a problem more
rapidly than a classical computer [69]. Consider the set of functions f that take one bit of

input and produce one bit of output. There are four such functions:

f(x)=0,f(x)=1, f(x) ==z, f(xr) = NOT =x. (35)

The first two of these functions are constant functions; the second two are ‘balanced’ in the
sense that half of their inputs yield 0 as output, while the other half yield 1. Suppose that
one is presented with a ‘black box’ that implements one of these functions. The problem is
to query this black box and to determine whether the function the box contains is constant
or balanced.

Classically, it clearly takes exactly two queries to determine whether the function in
the box is constant or balanced. Using quantum information processing, however, one

query suffices. The following quantum circuit shows how this is accomplished.
Figure 2: Deutsch-Jozsa Circuit

Quantum circuit diagrams are similar in character to their classical counterparts:

qubits enter on the left, undergo a series of transformations effected by quantum logic
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gates, and exit at the right, where they are measured. In the circuit above, the first
gate, represented by H is called a Hadamard gate. The Hadamard gate is a single-qubit

quantum logic gate that effects the transformation

10) — (1/v2)([0) + [1)), 1) — (1/v2)(|0) — [1)). (36)
1/vV2  1/V2 )

In other words, the Hadamard performs a unitary transformation Uy = ( V2 —1/v32
on its single-qubit input. Note that the Hadamard transformation is its own inverse:
UZ = Id.

The second logic gate implements the unknown, black-box function f. It takes two
binary inputs, x, y, and gives two binary outputs. The gate leaves the first input unchanged,
and adds f(z) to the second input (modulo 2), so that x — z and y — y + f(z) (mod2).
Such gates can be implemented using the controlled-NOT operation introduced above.
Recall that the controlled-NOT or CNOT leaves its first input bit unchanged, and flips the
second if and only if the first input is 1. In the symbol for a controlled-NOT operation,
the e part represents the control bit and the @ part represents the bit that can be flipped.
The circuits required to implement the four different functions from one bit to one bit are

as follows:

flz)=0: f(z)=1: f(x)=2: f(x)=NOT x: (37)

The black box in the Deutsch-Jozsa algorithm contains one of these circuits. Note that
the black-box circuits are ‘classical’ in the sense that they map input combinations of 0’s
and 1’s to output combinations of 0’s and 1’s: the circuits of equation (37) make sense as
classical circuits as well as quantum circuits.

Any classical circuit that can determine whether f is constant or balanced requires
at least two uses of the f gate. By contrast, the Deutsch-Jozsa circuit above requires only
one use of the f gate. Going through the quantum logic circuit, one finds that a constant
function yields the output |0) on the first output line, while a balanced function yields the
output |1) (up to an overall, unobservable phase). That is, only a single function call is
required to reveal whether f is constant or balanced.

Several comments on the Deutsch-Jozsa algorithm are in order. The first is that,
when comparing quantum algorithms to classical algorithms, it is important to compare
apples to apples: that is, the gates used in the quantum algorithm to implement the
black-box circuits should be the same as those used in any classical algorithms. The

difference, of course, is that the quantum gates preserve quantum coherence, a concept
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which is meaningless in the classical context. This requirement has been respected in the
Deutsch-Jozsa circuit above.

The second comment is that the Deutsch-Jozsa algorithm is decidedly odd and coun-
terintuitive. The f gates and the controlled-NOT gates from which they are constructed
both have the property that the first input passes through unchanged |0) — |0) and
|1) — |1). Yet somehow, when the algorithm is identifying balanced functions, the first
bit flips. How can this be? This is the part where quantum weirdness enters. Even
though the f and controlled-NOT gates leave their first input unchanged in the logi-
cal basis {|0),|1)}, the same property does not hold in other bases. For example, let
[4+) = (1/v/2)(|0) + 1)) = Ug|0), and let [1) = (1/4/2)(]0) —|1)) = Ug|1). Straightforward
calculation shows that, when acting on the basis {|+),|—)}, the CNOT still behaves like
a CNOT, but with the roles of its inputs reversed: now the second qubit passes through
unchanged, while the first qubit gets flipped. It is this quantum role reversal that underlies
the efficacy of the Deutsch-Jozsa algorithm. Pretty weird.

It is important to note that the Deutsch-Jozsa algorithm is not just a theoretical point.
The algorithm has been implemented using techniques from nuclear magnetic resonance
(NMR) [33]. The results are exactly as predicted by quantum mechanics: a single function
call suffices to determine whether that function is constant or balanced.

The two-qubit algorithm was first described by David Deutsch. Later, with Richard
Jozsa, he extended this algorithm to a multi-qubit algorithm. Now consider functions f
from n qubits to a single qubit. Once again, the problem is to determine whether or not
f is constant or balanced. That is, the function f in the black box is either constant:
f(z) = 0 for all n-bit inputs z, or f(x) =1 for all x, or balanced: f(z) = 0 for exactly half
of its 2™ possible input strings, and f(z) = 1 for the other half. (If this problem statement
seems somewhat artificial, note that the algorithm works equally well for distinguishing
between constant functions and ‘typical’ functions, which are approzimately balanced.)

On average, a classical algorithm takes a little more than two function calls to dis-
tinguish between a constant or a balanced function. However, in the worst case, it takes
27~1 1 1 calls, as more than half the inputs have to be sampled. As before, the quantum

algorithm takes but a single function call, as the following circuit shows.
Figure 3: full Deutsch-Jozsa circuit

To determine whether the f is constant or balanced, one measures the first n output
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bits: if they are all 0, then the function is constant; if one or more is 1, then the function

is balanced.

Other algorithms: the Quantum Fourier Transform

While it conclusively demonstrates that quantum computers are strictly more powerful
than classical computers for certain problems, the Deutsch-Jozsa algorithm does not solve a
problem of burning interest to applied computer scientists. Once it was clear that quantum
computers could offer a speedup over classical algorithms, however, other algorithms began
to be developed. Simon’s algorithm [70], for example, determines whether a function f
from n bits to n bits is (a) one-to-one, or (b) two-to-one with a large period s, so that
f(z+s) = f(x) for all . (In Simon’s algorithm the addition is bitwise modulo 2, with no
carry bits.)

Simon’s algorithm has a similar ‘flavor’ to the Deutsch-Jozsa algorithm: it is intriguing
but does not obviously admit wide application. A giant step towards constructing more
useful algorithms was Coppersmith’s introduction [71] of the Quantum Fourier Transform
(QFT). The fast Fourier transform maps a function of n bits to its discrete Fourier trans-

form function:
on_q

fl@) = gly) =D ™/ f(a), (39)

=0
The fast Fourier transform takes O(n2") steps. The quantum Fourier transform takes a

wave function over n qubits to a Fourier transformed wave function:

2" —1 2" —1
Y f@)a) — 27y ST f()y). (40)
=0 z,y=0

It is not difficult to show that the quantum Fourier transform is a unitary.

To obtain a quantum logic circuit that accomplishes the QFT, it is convenient to
express states in a binary representation. In the equations above, z and y are n-bit
numbers. Write xz as x, ...z, where x,,...2z; are the bits of z. This is just a more
concise way of saying that x = 2,2 + ... + 2,2"~!. Similarly, the expression 0.y; ...¥m
represents the number y1/2 + ...y,,/27"™. Using this binary notation, it is not hard to

show that the quantum Fourier transform can be written:
|:L“1 o xn> N 2fn/2(|0> T 62771'0.1*1 |1>)(|0> + e2m‘0.m2m1 |1>) o (|0> + eQTriO.acn...ml |1>) (41)

When the quantum Fourier transform is written in this form, it is straightforward to

construct a circuit that implements it:
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Figure 4: Quantum Fourier transform circuit.

Note that the QFT circuit for wave functions over n qubits takes O(n?) steps: it
is exponentially faster than the FFT for functions over n bits, which takes O(n2™) steps.
This exponential speedup of the quantum Fourier transform is what guarantees the efficacy
of many quantum algorithms.

The quantum Fourier transform is a potentially powerful tool for obtaining exponen-
tial speedups for quantum computers over classical computers. The key is to find a way
of posing the problem to be solved in terms of finding periodic structure in a wave func-
tion. This step is the essence of the best known quantum algorithm, Shor’s algorithm for

factoring large numbers [26].

Shor’s algorithm

The factoring problem can be stated as follows: Given N = pq, where p, ¢ are prime,
find p and q. For large p and ¢, this problem is apparently hard for classical computers.
The fastest known algorithm (the ‘humber sieve’) takes O(N'/3) steps. The apparent
difficulty of the factoring problem for classical computers is important for cryptography.
The commonly used RSA public-key cryptosystem relies on the difficulty of factoring to
guarantee security. Public-key cryptography addresses the following societally important
situation. Alice wants to send Bob some secure information (e.g., a credit card number).
Bob sends Alice the number N, but does not reveal the identity of p or ¢q. Alice then
uses IV to construct an encrypted version of the message she wishes to send. Anyone who
wishes to decrypt this message must know what p and ¢ are. That is, encryption can be
performed using the public key NV, but decryption requires the private key p, q.

In 1994, Peter Shor showed that quantum computers could be used to factor large
numbers and so crack public-key cryptosystems that whose security rests on the difficulty
of factoring [26]. The algorithm operates by solving the so-called ‘discrete logarithm’
problem. This problem is, given N and some number z, find the smallest » such that
2" =1 (mod N). Solving the discrete logarithm allows N to be factored by the following
procedure. First, pick x < N at random. Use Euclid’s algorithm to check that the greatest
common divisor of x and N is 1. (Euclid’s algorithm is to divide N by x; take the remainder
r1 and divide x by r1; take the remainder of that division, ro and divide r; by that, etc.
The final remainder in this procedure is the greatest common divisor, or g.c.d., of x and

N.) If the g.c.d. of z and N is not 1, then it is either p or ¢ and we are done.
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If the greatest common divisor of z and N is 1, suppose that we can solve the discrete
logarithm problem to find the smallest r such that 2" = 1 (mod N). As will be seen, if r is
even, we will be able to find the factors of IV easily. If r turns out to be odd, just pick a new
x and start again: continue until you obtain an even r (since this occurs half the time, you
have to repeat this step no more than twice on average). Once an even r has been found,
we have (z7/2 —1)(z"/?+1) = 1 (mod N). In other words, (z"/2 —1)(z"/?24+1) = bN = bpq
for some b. Finding the greatest common divisor of "/2 —1, 2"/2 +1 and N now reveals p
and q. The goal of the quantum algorithm, then, is to solve the discrete logarithm problem
to find the smallest r such that ™ = 1 mod N. If r can be found, then N can be factored.

In its discrete logarithm guise, factoring possesses a periodic structure that the quan-
tum Fourier transform can reveal. First, find an z whose g.c.d. with N is 1, as above, and
pick n so that N2 < 2" < 2N2. The quantum algorithm uses two n-qubit registers. Begin
by constructing a uniform superposition 27"/2 Zzlgl |k)|0). Next, perform exponentiation
modulo NV to construct the state,

2" —1

9~ n/2 Z |k)|2* mod N). (42)
k=0

This modular exponentiation step takes O(n®) operations (note that 22° mod N can be
evaluated by first constructing 2 mod N, then constructing (z2)? mod N, etc.). The
periodic structure in equation (42) arises because if ¥ = a mod N, for some a, then
2"t = a mod N, 22" = a mod N, ..., 2*t™" = a mod N, up to the largest m such
that k + mr < N2. The same periodicity holds for any a. That is, the wave function (42)
is periodic with with period r. So if we apply the quantum Fourier transform to this wave
function, we can reveal that period and find r, thereby solving the discrete logarithm and
factoring problems.

To reveal the hidden period and find r apply the QFT to the first register in the state
(42). The result is

2" -1
27" Y TR )2k mod N). (43)

jk=0
Because of the periodic structure, positive interference takes place when j(k + ¢r) is close
to a multiple of 2. That is, measuring the first register now yields a number j such

that jr/2™ is close to an integer: only for such j does the necessary positive interference

take place. In other words, the algorithm reveals a j such that j/2" = s/r for some
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integer s. That is, to find r, we need to find fractions s/r that approximate j/2™. Such
fractions can be obtained using a continued fraction approximation. With reasonably high
probability, the result of the continued fraction approximation can be shown to yield the
desired answer r. (More precisely, repetition of this procedure O(2log N) times suffices
to identify r.) Once r is known, then the factors p and ¢ of N can be recovered by the
reduction of factoring to discrete logarithm given above.

The details of Shor’s algorithm reveal considerable subtlety, but the basic idea is
straightforward. In its reduction to discrete logarithm, factoring possesses a hidden peri-
odic structure. This periodic structure can be revealed using a quantum Fourier transform,
and the period itself in turn reveals the desired factors.

More recent algorithms also put the quantum Fourier transform to use to extract
hidden periodicities. Notably, the QFT can be used to find solutions to Pell’s equation
(2?2 — ny? = 1, for non-square n) [72]. Generalizations of the QFT to transforms over
groups (the dihedral group and the permutation group on n objects S,,) have been applied
to other problems such as the shortest vector on a lattice [73] (dihedral group, with some

success) and the graph isomorphism problem (S,,, without much success [74]).

The phase-estimation algorithm

One of the most useful applications of the quantum Fourier transform is finding the
eigenvectors and eigenvalues of unitary transformations. The resulting algorithm is called
the ‘phase-estimation’ algorithm: its original form is due to Kitaev [75]. Suppose that
we have the ability to apply a ‘black box’ unitary transformation U. U can be written
U=3,; e™®i|4)(j|, where |j) are the eigenvectors of U and e'?i are the corresponding
eigenvalues. The goal of the algorithm is to estimate the ¢’®s and the |j). (The goal of
the original Kitaev algorithm was only to estimate the eigenvalues e*?i. However, Abrams
and Lloyd showed that the algorithm could also be used to construct and estimate the

eigenvectors |j), as well [76]. The steps of the phase estimation algorithm are as follows.

(0) Begin with the inital state |0)|t), where |0) is the n-qubit state 00...0), and |¢) is the
state that one wishes to decompose into eigenstates: [¢) =, 9;|j).

(1) Using Hadamards or a QFT, put the first register into a uniform superposition of all

possible states:
2" —1

=272 3 Ry,

k=0
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(2) In the k’th component of the superposition, apply U* to [1)):

2" —1

=272 N KU [y)
k=0

2m—1

=272 N " [k)U*4p5)
4,k=0
2" —1

=272 37 e k).

J,k=0

(3) Apply inverse QFT to first register:

2" —1

_,9—n Z ¢keik¢je—2wikl/2" ’l>|j>
4,k 1=0

(4) Measure the registers. The second register contains the eigenvector |j). The first
register contains |l) where 27l/2" ~ ¢;. That is, the first register contains an n-bit
approximation to ¢;.

By repeating the phase-estimation algorithm many times, one samples the eigenvectors
and eigenvalues of U. Note that to obtain n-bits of accuracy, one must possess the ability
to apply U 2" times. This feature limits the applicability of the phase-estimation algorithm
to a relatively small number of bits of accuracy, or to the estimation of eigenvalues of Us
that can easily be applied an exponentially large number of times. We’ve already seen such
an example of a process in modular exponentiation. Indeed, Kitaev originally identified
the phase estimation algorithm as an alternative method for factoring.

Even when only a relatively small number of applications of U can be performed,
however, the phase-estimation algorithm can provide an exponential improvement over
classical algorithms for problems such as estimating the ground state of some physical

Hamiltonian [76-77], as will now be seen.

Quantum simulation

One of the earliest uses for a quantum computer was suggested by Richard Feyn-
man [24]. Feynman noted that simulating quantum systems on a classical computer was
hard: computer simulations of systems such as lattice gauge theories take up a substantial

fraction of all supercomputer time, and, even then, are often far less effective than their
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programmers could wish them to be. The reason why it’s hard to simulate a quantum
system on a classical computer is straightforward: in the absence of any sneaky tricks, the
only known way to simulate a quantum system’s time evolution is to construct a represen-
tation of the full state of the system, and to evolve that state forward using the system’s
quantum equation of motion. To represent the state of a quantum system on a classical
computer is typically exponentially hard, however: an n-spin system requires 2" complex
numbers to represent its state. Evolving that state forward is even harder: it requires
exponentiation of a 2 by 2" matrix. Even for a small quantum system, for example, one
containing fifty spins, this task lies beyond the reach of existing classical supercomputers.
True, supercomputers are also improving exponentially in time (Moore’s law). No matter
how powerful they become, however, they will not be able to simulate more than 300 spins

2300 humbers that characterize the state

directly, for the simple reason that to record the
of the spins would require the use of all 2390 particles in the universe within the particle
horizon.

Feynman noted that if one used qubits instead of classical bits, the state of an n-
spin system can be represented using just n qubits. Feynman proposed a class of systems
called ‘universal quantum simulators’ that could be programmed to simulate any other
quantum system. A universal quantum simulator has to possess a flexible dynamics that
can be altered at will to mimic the dynamics of the system to be simulated. That is,
the dynamics of the universal quantum simulator form an analog to the dynamics of the
simulated system. Accordingly, one might also call quantum simulators, ‘quantum analog
computers.’

In 1996, Lloyd showed how Feynman’s proposal could be turned into a quantum
algorithm [78]. For each degree of freedom of the system to be simulated, allocate a
quantum register containing a sufficient number of qubits to approximate the state of
that degree of freedom to some desired accuracy. If one wishes to simulate the system’s
interaction with the environment, a number of registers should also be allocated to simulate
the environment (for a d-dimensional system, up to d? registers are required to simulate the
environment). Now write the Hamiltonian of the system an environment as H = >_," | Hy,
where each H, operates on only a few degrees of freedom. The Trotter formula implies
that

, . : 1
6—2H§t — e—ZHlAt . e—szAt — 5 Z[Hj, Hk]At2 + O(Ats) (44)
ik

Each e *#¢2? can be simulated using quantum logic operations on the quantum bits in the
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registers corresponding to the degrees of freedom on which H, acts. To simulate the time

1HAt

evolution of the system over time t = nAt, we simply apply e~ n times, yielding

e HHl — (eTHHANN _ ([ e tHeAt _ gZ[Hj, Hi At + O(AF). (45)
jk
The quantum simulation takes O(mn) steps, and reproduces the original time evolution to
an accuracy h*t?*m?/n, where h is the average size of ||[H;, Hy]|| (note that for simulating
systems with local interactions, most of these terms are zero, because most of the local
interactions commute with eachother).

A second algorithm for quantum simulation takes advantage of the quantum Fourier
transform [79-80]. Suppose that one wishes to simulate the time evolution of a quan-
tum particle whose Hamiltonian is of the form H = P?/2m + V(X), where P = —id/0x
is the momentum operator for the particle, and V(X) is the potential energy operator
for the particle expressed as a function of the position operator X. Using an n-bit dis-
cretization for the state we identify the x eigenstates with |z) = |z, ...21). The momen-
tum eigenstates are then just the quantum Fourier transform of the position eigenstates:
Ip) = 27"/2 Zi:gl e?™ /2" 1) That is, P = UQFTXUCBFT'

By the Trotter formula, the infinitesimal time evolution operator is

e~ tHAL _ (—iPPAt/2m —iV(X)At | O(6t2). (46)

To enact this time evolution operator one proceeds as above. Write the state of the particle

in the z-basis: 1) = Y t,|z). First apply the infinitesimal e=¢V(X)A¢ operator:
> el = ) eV ), (47)

—iP25t/2m

To apply the infinitesimal e operator, first apply an inverse quantum Fourier

transform on the state, then apply the unitary transformation |z) — e~ At/2m|z) and

finally apply the regular QFT. Because X and P are related by the quantum Fourier
—iPzAt/Zm‘ Applying

first e~V (X)At then e~ P At/2m yields the full infinitesimal time evolution (46). The full
iH

transform, these three steps effectively apply the transformation e

time evolution operator e~*/’* can then be built up by repeating the infinitesimal operator
t/At times. As before, the accuracy of the quantum simulation can be enhanced by slicing

time ever more finely.
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Quantum simulation represents one of the most powerful uses of quantum computers.
It is probably the application of quantum computers that will first give an advantage over
classical supercomputers, as only one hundred qubits or fewer are required to simulate,
e.g., molecular orbitals or chemical reactions, more accurately than the most powerful
classical supercomputer. Indeed, special purpose quantum simulators have already been
constructed using nuclear magnetic resonance techniques [81]. These quantum analog
computers involve interactions between many hundreds of nuclear spins, and so are already
performing computations that could not be performed by any classical computer, even one

the size of the entire universe.

Quantum search

The algorithms described above afford an exponential speedup over the best classical
algorithms currently known. Such exponential speedups via quantum computation are
hard to find, and are currently limited to a few special problems. There exists a large
class of quantum algorithms afford a polynomial speedup over the best possible classical
algorithms, however. These algorithms are based on Grover’s quantum search algorithm.

Grover’s algorithm [31] allows a quantum computer to search an unstructured database.
Suppose that this database contains NV items, one of which is ‘marked,” and the remainder

b

of which are unmarked. Call the marked item w, for ‘winner.” Such a database can be
represented by a function f(z) on the items in the database, such that f of the marked
item is 1, and f of any unmarked item is 0. That is, f(w) = 1, and f(z # w) = 0. A
classical search for the marked item must take N/2 database calls, on average. By contrast,
a quantum search for the marked item takes O(\/N ) calls, as will now be shown.

Unstructured database search is an ‘oracle’ problem. In computer science, an oracle
is a ‘black box’ function: one can supply the black box with an input =, and the black box
then provides an output f(x), but one has no access to the mechanism inside the box that
computes f(x) from x. For the quantum case, the oracle is represented by a function on
two registers, one containing z, and the other containing a single qubit. The oracle takes
|z)|y) — |x)|y + f(2)), where the addition takes place modulo 2.

Grover originally phrased his algorithm in terms of a ‘phase’ oracle U,,, where |z)U,,|z) =]}
(—=1)7®)|z). In other words, the ‘winner’ state acquires a phase of —1: |w) — —|w), while
the other states remain unchanged: |z # w) — |z). Such a phase oracle can be con-
structed from the original oracle in several ways. The first way involves two oracle calls.

Begin with the state |z)|0) and call the oracle once to construct the state |z)|f(x)). Now
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apply a o, transformation to the second register. The effect of this is to take the state to
(—=1)7@)|2)|f(z)). Applying the oracle for a second time yields the desired phase-oracle
state (—1)f(®)|x)]|0). A second, sneakier way to construct a phase oracle is to initialize the
second qubit in the state (1/4/2)(]0) —[1)). A single call of the original oracle on the state
12)(1/v/2)(]0) — |1)) then transforms this state into (—1)F@|z)((1/v/2)(]0) — [1))). In this

way a phase oracle can be constructed from a single application of the original oracle.

Two more ingredients are needed to perform Grover’s algorithm. Let’s assume that
N = 2™ for some n, so that the different states |j) can be written in binary form. Let Uy be
the unitary transformation that takes |0...0) — —|0...0), that takes |j) — |j) for j # 0.
That is, Uy acts in the same way as U,,, but applies a phase of —1 to |0...0) rather than
to |w). In addition, let H be the transformation that performs Hadamard transformations

on all of the qubits individually.

Grover’s algorithm is performed as follows. Prepare all qubits in the state |0) and
apply the global Hadamard transformation H to create the state 1) = (1/v/N) Z;.V:_Ol 17)-
Apply, in succession, U,,, then H, then Uy, then H again. These four transformations
make up the composite transformation Us = HUyHU,,. Now apply Us again, and repeat
for a total of ~ (7/4)v/N times (that is, the total number of times Ug is applied is equal
to the integer closest to (7/4)v/N). The system is now, with high probability, in the state
|w). That is, Ué/ﬁl(). ..0) & |w). Since each application of Ug contains a single call to the
phase oracle U, the winner state |w) has now been identified with O(v/N) oracle calls, as

promised.

The quantum algorithm succeeds because the transformation Ug acts as a rotation in
the two-dimensional subspace defined by the states |¢)) and |w). The angle of the rotation
effected by each application of Ug can be shown to be given by sinf = 2/ V/N. Note
that |¢) and |w) are approximately orthogonal, (¢)|w) = 1/v/N, and that after the initial
Hadamard transformation the system begins in the state |¢)). Each successive application
of Ug moves it an angle @ closer to |w). Finally, after ~ (7/4)v/N interations, the state
has rotated the full ~ 7 /2 distance to |w).

Grover’s algorithm can be shown to be optimal [82]: no black-box algorithm can find
lw) with fewer than O(v/N) iterations of the oracle. The algorithm also works for oracles
where there are M winners, so that f(z) = 1 for M distinct inputs. In this case, the
angle of rotation for each iteration of Ug is given by sinf = (2/N) \/m , and the
algorithm takes ~ (7/4)\/N/M steps to identify a winner.
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The adiabatic algorithm

Many classically hard problems take the form of optimization problems. In the well-
known travelling salesman problem, for example, one aims to find the shortest route con-
necting a set of cities. Such optimization problems can be mapped onto a physical system,
in which the function to be optimized is mapped onto the energy function of the system.
The ground state of the physical system then represents a solution to the optimization
problem. A common classical technique for solving such problems is simulated annealing:
one simulates the process of gradually cooling the system in order to find its ground state
[83]. Simulated annealing is bedeviled by the problem of local minima, states of the system
that are close to the optimal states in terms of energy, but very far away in terms of the
particular configuration of the degrees of freedom of the state. To avoid getting stuck in
such local minima, one must slow the cooling process to a glacial pace in order to insure

that the true ground state is reached in the end.

Quantum computing provides a method for getting around the problem of local min-
ima. Rather than trying to reach the ground state of the system by cooling, one uses a
purely quantum-mechanical technique for finding the state [84]. One starts the system
with a Hamiltonian dynamics whose ground state is simple to prepare (e.g., ‘all spins side-
ways’). Then one gradually deforms the Hamiltonian from the simple dynamics to the
more complex dynamics whose ground state encodes the answer to the problem in ques-
tion. If the deformation is sufficiently gradual, then the adiabatic theorem of quantum
mechanics guarantees that the system remains in its ground state throughout the defor-
mation process. When the adiabatic deformation is complete, then the state of the system

can be measured to reveal the answer.

Adiabatic quantum computation (also called ‘quantum annealing’) represents a purely
quantum way to find the answer to hard problems. How powerful is adiabatic quantum
computation? The answer is, ‘nobody knows for sure.” The key question is, what is
‘sufficently gradual’ deformation? That is, how slowly does the deformation have to be to
guarantee that the transformation is adiabatic? The answer to this question lies deep in
the heart of quantum matter. As one performs the transformation from simple to complex
dynamics, the adiabatic quantum computer goes through a quantum phase transition. The
maximum speed at which the computation can be performed is governed by the size of the
minimum energy gap of this quantum phase transition. The smaller the gap, the slower

the computation. The scaling of gaps during phase transitions (‘Gapology’) is one of the
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key disciplines in the study of quantum matter [85]. While the scaling of the gap has been
calculated for many familiar quantum systems such as Ising spin glasses, calculating the
gap for adiabatic quantum computers that are solving hard optimization problems seems
to be just about as hard as solving the problem itself.

While few quantum computer scientists believe that adiabatic quantum computation
can solve the travelling salesman problem, there is good reason to believe that adiabatic
quantum computation can outperform simulated annealing on a wide variety of hard opti-
mization problems. In addition, it is known that adiabatic quantum computation is neither
more nor less powerful than quantum computation itself: a quantum computer can simu-
late a physical system undergoing adiabatic time evolution using the quantum simulation
techniques described above; in addition, it is possible to construct devices that perform

conventional quantum computation in an adiabatic fashion [86].

Quantum walks

A final, ‘physics-based,” type of algorithm is the quantum walk [87-90]. Quantum
walks are coherent versions of classical random walks. A classical random walk is a stochas-
tic Markov process, the random walker steps between different states, labelled by j, with
a probability w;; for making the transition from state j to state ¢. Here w;; is a stochastic
matrix, w;; > 0 and ) jwi; = 1. In a quantum walk, the stochastic, classical process
is replaced by a coherent, quantum process: the states |j) are quantum states, and the
transition matrix U;; is unitary.

By exploiting quantum coherence, quantum walks can be shown typically to give a
square root speed up over classical random walks. For example, in propagation along a
line, a classical random walk is purely diffusive, with the expectation value of displacement
along the line going as the square root of the number of steps in the walk. By contrast,
a quantum walk can be set up as a coherent, propagating wave, so that the expectation
value of the displacement is proportional to the number of steps [88]. A particularly elegant
example of a square root speed up in a quantum walk is the evaluation of a NAND tree
[90]. A NAND tree is a binary tree containing a NAND gate at each vertex. Given inputs
on the leaves of the tree, the problem is to evaluate the outcome at the root of the tree: is
it zero or one? NAND trees are ubiquitous in, e.g., game theory: the question of who wins
at chess, checkers, or Go, is determined by evaluating a suitable NAND tree. Classically,
a NAND tree can be evaluated with a minimum of steps. A quantum walk, by contrast,

can evaluate a NAND tree using only 2™/2 steps.
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For some specially designed problems, such as propagation along a random tree, quan-
tum walks can give exponential speedups over classical walks [89]. The question of what
problems can be evaluated more rapidly using quantum walks than classical walks remains

open.

The future of quantum algorithms

The quantum algorithms described above are potentially powerful, and, if large-scale
quantum computers can be constructed, could be used to solve a number of important
problems for which no efficient classical algorithms exist. Many questions concerning
quantum algorithms remain open. While the majority of quantum computer scientists
would agree that quantum algorithms are unlikely to provide solutions to NP-complete
problems, it is not known whether or not quantum algorithms could provide solutions to
such problems as graph isomorphism or shortest vector on a lattice. Such questions are an

active field of research in quantum computer science.
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(V) Noise and Errors

The picture of quantum computation given in the previous section is an idealized
picture that does not take into account the problems that arise when quantum computers
are built in practice. Quantum computers can be built using nuclear magnetic resonance,
ion traps, trapped atoms in cavities, linear optics with feedback of nonlinear measurements,
superconducting systems, quantum dots, electrons on the surface of liquid helium, and
a variety of other standard and exotic techniques. Any system that can be controlled
in a coherent fashion is a candidate for quantum computation. Whether a coherently
controllable system can actually be made to computer depends primarily on whether it is
possible to deal effectively with the noise intrinsic to that system. Noise induces errors in
computation. Every type of quantum information processor is subject to its own particular
form of noise.

A detailed discussion of the various technologies for building quantum computers lies
beyond the scope of this article. While the types of noise differ from quantum technology
to quantum technology, however, the methods for dealing with that noise are common
between technologies. This section presents a general formalism for characterizing noise
and errors, and discusses the use of quantum error-correcting codes and other techniques

for coping with those errors.

Open-system operations

The time evolution of a closed quantum-mechanical system is given by unitary trans-
formation: p — UpUT, where U is unitary, UT = U~!. For discussing quantum commu-
nications, it is necessary to look at the time evolution of open quantum systems that can
exchange quantum information with their environment. The discussion of open quantum
systems is straightforward: simply adjoin the system’s environment, and consider the cou-
pled system and environment as a closed quantum system. If the joint density matrix for

system and environment is
pse(0) = psp(t) = Usppse(0)UL. (48)

The state of the system on its own is obtained by taking the partial trace over the envi-
ronment, as described above: pg(t) = trgpsg(t).

A particularly useful case of system and environmental interaction is one in which
the system and environment are initially uncorrelated, so that psg(0) = ps(0) ® pg(0). In

this case, the time evolution of the system on its own can always be written as pg(t) =
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ok AkpS(O)AL. Here the Ay are operators that satisfy the equation ), ALAk = Id: the
Ay are called Kraus operators, or effects. Such a time evolution for the system on its
own is called a completely positive map. A simple example of such a completely positive
map for a qubit is Ag = Id/v/2, Ay = 0,/v2. {Ag, A1} can easily be seen to obey
A(T)AO + AIAl = Id. This completely positive map for the qubit corresponds to a time
evolution in which the qubit has a 50% chance of being flipped about the z-axis (the effect
A1), and a 50% chance of remaining unchanged (the effect Ap).

The infinitesimal version of any completely positive map can be obtained by taking
pse(0) = ps(0) ® pg(0), and by expanding equation (49) to second order in ¢. The result

is the Lindblad master equation:

Ops

= —i[H (L} Lips — 2Lgpst LiL). 4
ot S, Ps] — g kPS kpsLy + psLy Li) (49)

Here Hg is the effective system Hamiltonian: it is equal to the Hamiltonian Hg for the
system on its own, plus a perturbation induced by the interaction with the environment
(the so-called ‘Lamb shift’). The Lj correspond to open system effects such as noise and

€errors.

Quantum error-correcting codes

One of the primary effects of the environment on quantum information is to cause
errors. Such errors can be corrected using quantum error-correcting codes. Quantum error-
correcting codes are quantum analogs of classical error-correcting codes such as Hamming
codes or Reed-Solomon codes [91]. Like classical error-correcting codes, quantum error-
correcting codes involve first encoding quantum information in a redundant fashion; the
redundant quantum information is then subjected to noise and errors; then the code is
decoded, at which point the information needed to correct the errors lie in the code’s
syndrome.

More bad things can happen to quantum information than to classical information.
The only error that can occur to a classical bit is a bit-flip. By contrast, a quantum bit can
either be flipped about the z-axis (the effect o), flipped about the y-axis (the effect o),
flipped about the z-axis (the effect o,), or some combination of these effects. Indeed, an
error on a quantum bit could take the form of a rotation by an unknown angle 6 about an
unknown axis. Since specifying that angle and axis precisely could take an infinite number

of bits of information, it might at first seem impossible to detect and correct such an error.
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In 1996, however, Peter Shor [92] and Andrew Steane [93] independently realized that
if an error correcting code could detect and correct bit-flip errors (o, ) and phase-flip errors
(02), then such a code would in fact correct any single-qubit error. The reasoning is as
follows. First, since o, = i0,0,, a code that detects and corrects first o, errors, then o,
errors will also correct o, errors. Second, since any single-qubit rotation can be written
as a combination of o,,0, and o, rotations, the code will correct arbitrary single qubit
errors. The generalization of such quantum error-correcting codes to multiple qubit errors
are called Calderbank-Shor-Steane (CSS) codes [94]. A powerful technique for identifying
and characterizing quantum codes is Gottesman’s stabilizer formalism [95].

Concatenation is a useful method for constructing codes, both classical and quantum.
Concatenation combines two codes, with the second code acting on bits that have been
encoded using the first code. Quantum error-correcting codes can be combined with quan-
tum computation to perform fault-tolerant quantum computation. Fault-tolerant quantum
computation allows quantum computation to be performed accurately even in the presence
of noise and errors, as long as those errors occur at a rate below some threshold [96-98].
For restricted error models [99], this rate can be as high as 1% — 3%. For realistic error

models, however, the rate is closer to 1073 — 1074,

Re-focusing

Quantum error-correcting codes are not the only technique available for dealing with
noise. If, as is frequently the case, environmentally induced noise possesses some identifi-
able structure in terms of correlations in space and time, or obeys some set of symmetries,
then powerful techniques come into play for coping with noise.

First of all, suppose that noise is correlated in time. The simplest such correlation
is a static imperfection: the Hamiltonian of the system is supposed to be H, but the
actual Hamiltonian is H + AH, where AH is some unknown perturbation. For example,
an electron spin could have the Hamiltonian H = —(h/2)(w + Aw)o,, where Aw is an
unknown frequency shift. If not attended to, such a frequency shift will introduce unknown
phases in a quantum computation, which will in turn cause errors.

Such an unknown perturbation can be dealt with quite effectively simply by flipping
the electron back and forth. Let the electron evolve for time T'; flip it about the z-axis;
let it evolve for time T'; finally, flip it back about the z-axis. The total time-evolution

operator for the system is then

o_xei(w+Aw)TazO_xei(w—FAw)TUz = Id. (50)
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That is, this simple refocusing technique cancels out the effect of the unknown frequency
shift, along with the time evolution of the unperturbed Hamiltonian.

Even if the environmental perturbation varies in time, refocusing can be used signif-
icantly to reduce the effects of such noise. For time-varying noise, refocusing effectively
acts as a filter, suppressing the effects of noise with a correlation time longer than the
refocusing timescale T. More elaborate refocusing techniques can be used to cope with the
effect of couplings between qubits. Refocusing requires no additional qubits or syndromes,
and so is a simpler (and typically much more effective) technique for dealing with errors
than quantum error-correcting codes. For existing experimental systems, refocusing typi-
cally makes up the ‘first line of defence’ against environmental noise. Once refocusing has
dealt with time-correlated noise, quantum error correction can then be used to deal with

any residual noise and errors.

Decoherence-free subspaces and noiseless subsystems

If the noise has correlations in space, then quantum information can often be encoded
in such a way as to be resistant to the noise even in the absence of active error correction.
A common version of such spatial correlation occurs when each qubit is subjected to the
same error. For example, suppose that two qubits are subjected to noise of the form of a
fluctuating Hamiltonian H(t) = (1/2)y(t)(cl + ¢2). This Hamiltonian introduces a time-
varying phase (t) between the states | T);,| |);. The key point to note here is that this
phase is the same for both qubits. A simple way to compensate for such a phase is to
encode the logical state |0) as the two-qubit state | T)1| |)2, and the logical state |1) as the
two-qubit state | |)1| T)2. It is simple to verify that the two-qubit encoded states are now
invariant under the action of the noise: any phase acquired by the first qubit is cancelled
out by the equal and opposite phase acquired by the second qubit. The subspace spanned
by the two-qubit states |0), |1) is called a decoherence-free subspace: it is invariant under
the action of the noise.

Decoherence-free subspaces were first discovered by Zanardi [100] and later popular-
ized by Lidar [101]. Such subspaces can be found essentially whenever the generators
of the noise possess some symmetry. The general form that decoherence-free subspaces
take arises from the following observation concerning the relationship between noise and
symmetry.

Let {E)} be the effects that generate the noise, so that the noise takes p — >, Ej, pE,Z,
and let £ be the algebra generated by the {Fx}. Let G be a symmetry of this algebra, so
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that [g, F] = 0 for all ¢ € G, E € £. The Hilbert space for the system then decomposes

into irreducible representation of £ and G in the following well-known way:

H=> MM, (51)
J

where H% are the irreducible representations of £, and Hé are the irreducible representa-
tions of G.

The decomposition (51) immediately suggests a simple way of encoding quantum
information in a way that is immune to the effects of the noise. Look at the effect of the
noise on states of the form |¢); ® [1); where |¢); € H}, and |1); € HZ, for some j. The
effect E), acts on this state as (Ei](b)?) ® [1));, where Ei is the effect corresponding to Fj
within the representation H7,. In other words, if we encode quantum information in the
state |1));, then the noise has no effect on [1),;. A decoherence-free subspace corresponds
to an Hé where the corresponding representation of &£, H%‘, is one-dimensional. The case
where H%, is higher dimensional is called a noiseless subsystem [102].

Decoherence-free subspaces and noiseless subsystems represent highly effective meth-
ods for dealing with the presence of noise. Like refocusing, these methods exploit sym-
metry to encode quantum information in a form that is immune to noise that possesses
that symmetry. Where refocusing exploits temporal symmetry, decoherence-free subspaces
and noiseless subsystems exploit spatial symmetry. All such symmetry-based techniques
have the advantage that no error-correcting process is required. Like refocusing, therefore,
decoherence-free subspaces and noiseless subsystems form the first line of defense against
noise and errors.

The tensor product decomposition of irreducible representations in equation (52) lies
behind all known error-correcting codes [103]. A general quantum-error correcting code
begins with a state |00...0)41), where |00...0) 4 is the initial state of the ancilla. An
encoding transformation U, is then applied; an error E} occurs; finally a decoding trans-

formation Uy, is applied to obtain the state

lew) alt0) = Uge EUvn]00. .. 0) 4]h). (52)

Here, |eg) 4 is the state of the ancilla that tells us that the error corresponding to the effect
Ej has occurred. Equation (52) shows that an error-correcting code is just a noiseless
subsystem for the ‘dressed errors’ {Uje.ErU.y,}. At bottom, all quantum error-correcting

codes are based on symmetry.
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Topological quantum computing

A particularly interesting form of quantum error correction arises when the under-
lying symmetry is a topological one. Kitaev [104] has shown how quantum computation
can be embedded in a topological context. Two-dimensional systems with the proper sym-
metries exhibit topological excitations called anyons. The name, ‘anyon,” comes from the
properties of these excitations under exchange. Bosons, when exchanged, obtain a phase
of 1; fermions, when exchanged, obtain a phase of —1. Anyons, by contrast, when ex-
changed, can obtain an arbitrary phase e‘®. For example, the anyons that underlie the

fractional quantum Hall effect obtain a phase €7%/3

when exchanged. Fractional quantum
Hall anyons can be used for quantum computation in a way that makes two-qubit quantum
logic gates intrinsically resistant to noise [105].

The most interesting topological effects in quantum computation arise when one em-
ploys non-abelian anyons [104]. Non-abelian anyons are topological excitations that possess
internal degrees of freedom. When two non-abelian anyons are exchanged, those internal
degrees of freedom are subjected not merely to an additional phase, but to a general uni-
tary transformation U. Kitaev has shown how in systems with the proper symmetries,
quantum computation can be effected simply by exchanging anyons. The actual computa-
tion takes place by dragging anyons around eachother in the two-dimensional space. The
resulting transformation can be visualized as a braid in two dimensional space plus the
additional dimension of time.

Topological quantum computation is intrinisically fault tolerant. The topological ex-
citations that carry quantum information are impervious to locally occurring noise: only
a global transformation that changes the topology of the full system can create a error.
Because of their potential for fault tolerance, two-dimensional systems that possess the
exotic symmetries required for topelogical quantum computation are being actively sought

out.
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VI. Quantum Communication

Quantum mechanics provides the fundamental limits to information processing. Above,
quantum limits to computation were investigated. Quantum mechanics also provides the
fundamental limits to communication. This section discusses those limits. The session
closes with a section on quantum cryptography, a set of techniques by which quantum

mechanics guarantees the privacy and security of cryptographic protocols.

Multiple uses of channels

Each quantum communication channel is characterized by its own open-system dy-
namics. Quantum communication channels can possess memory, or be memoryless, de-
pending on their interaction with their environment. Quantum channels with memory are
a difficult topic, which will be discussed briefly below. Most of the discussion that follows
concerns the memoryless quantum channel. A single use of such a channel corresponds to
a completely positive map, p — >, Ag pAL, and n uses of the channel corresponds to a

transformation

ki...kn K

where we have used the capital letter K to indicate the n uses of the channel k;...k,.
In general, the input state p;.., may be entangled from use to use of the channel. Many
outstanding questions in quantum communication theory remain unsolved, including, for
example, the question of whether entangling inputs of the channel helps for communicating

classical information.

Sending quantum information

Let’s begin with using quantum channels to send quantum information. That is, we
wish to send some quantum state [¢)) from the input of the channel to the output. To do
this, we encode the state as some state of n inputs to the channel, send the encoded state
down the channel, and then apply a decoding procedure at the output to the channel. It
is immediately seen that such a procedure is equivalent to employing a quantum error-
correcting code.

The general formula for the capacity of such quantum channels is known [44-45]. Take
some input or ‘signal’ state pi ., for the channel. First, construct a purification of this
state. A purification of a density matrix p for the signal is a pure state |¢)) 45 for the signal

together with an ancilla, such that the state pg = tra|v)as(¢| is equal to the original
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density matrix p. There are many different ways to purify a state: a simple, explicit way
is to write p = . p;|j)(j| in diagonal form, where {|j)} is the eigenbasis for p. The state
) as = >_; /Pjli)ali)s, where {|j) 4} is an orthonormal set of states for the ancilla, then
yields a purification of p.

To obtain the capacity of the channel for sending quantum information, proceed as
follows. Construct a purification for the signal pi. ,: |¢n) = > ; /Ps|J)’%|J)s, where we
have used an index .J instead of j to indicate that these states are summed over n uses of
the channel. Now send the signal state down the channel, yielding the state

pas =Y VPipr )il | @ Y Axl)5(T | AL, (54)
K

JJ!
where as above K = k;y ...k, indicates k uses of the channel. psg is the state of output

signal state together with the ancilla. Similarly, pg = trapags is the state of the output
signal state on its own.

Let I(AS) = —trpagslog, pas be the entropy of pag, measured in bits. Similarly, let
I(S) = —trpslog, ps be the entropy of the output state pg, taken on its own. Define
I(S/A) = I(S) — I(AS) if this quantity is positive, and I(S/A) = 0 otherwise. The
quantity I(S/A) is a measure of the capacity of the channel to send quantum information
if the signals being sent down the channel are described by the density matrix pi. .. It
can be shown using either CSS codes [106] or random codes [45,107] that encodings exist
that allow quantum information to be sent down the channel and properly decoded at the
output at a rate of I(S/A)/n qubits per use.

I(S/A) is a function only of the properties of the channel and the input signal state
p1..n- The bigger I(S/A) is, the less coherence the channel has managed to destroy. For
example, if the channel is just a unitary transformation of the input, which destroys no
quantum information, then I(AS) = 0 and I(S/A) = I(S): the state of the signal and
ancilla after the signal has passed through the channel is pure, and all quantum information
passes down the channel unscathed. By contrast, a completely decohering channel takes an
the input >, \/pj|7)alj)s to the output >, p;[j)a(j|®|)s(j|- In this case, I(AS) = I(S)
and I(S/A) = 0: the channel has completely destroyed all quantum information sent down
the channel.

In order to find the absolute capacity of the channel to transmit quantum information,
we must maximize the quantity I(S/A)/n over all n-state inputs p;. ., to the channel and

take the limit as n — oo. More precisely, define

Ic = lim,,_, oomin supl(S/A)/n, (55)
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where the supremum (sup) is taken over all n-state inputs p1..,. I¢ is called the coherent
information [44-45]: it is the capacity of the channel to transmit quantum information
reliably.

Because the coherent information is defined only in the limit that the length of the
input state goes to infinity, it has been calculated exactly in only a few cases. One might
hope, in analogue to Shannon’s theory of classical communication, that for memoryless
channels one need only optimize over single inputs. That hope is mistaken, however:
entangling the input states typically increases the quantum channel capacity even for

memoryless channels [108].

Capacity of quantum channels to transmit classical information

One of the most important questions in quantum communications is the capacity of
quantum channels to transmit classical information. All of our classical communication
channels — voice, free space electromagnetic, fiber optic, etc. — are at bottom quantum
mechanical, and their capacities are set using the laws of quantum mechanics. If quantum
information theory can discover those limits, and devise ways of attaining them, it will
have done humanity a considerable service.

The general picture of classical communication using quantum channels is as follows.
The conventional discussion of communication channels, both quantum and classical, des-
ignates the sender of information as Alice, and the receiver of information as Bob. Alice
selects an ensemble of input states p; over n uses of the channel, and send the J’th
input py; with probability p;. The channel takes the n-state input p; to the output
pr= >k Axkp JAJ}{. Bob then performs a generalized measurement {B,} with outcomes
{¢} to try to reveal which state Alice sent. A generalized measurement is simply a specific
form an open-system transformation. The { By} are effects for a completely positive map:
Yo Bng = Id. After making the generalized measurement on an output state p;, Bob
obtains the outcome ¢ with probability py; = trBep JB;, and the system is left in the state
(1/pey.s)BepsBj.

Once Alice has chosen a particular ensemble of signal states {ps,ps}, and Bob has
chosen a particular generalized measurement, then the amount of information that can
be sent along the channel is determined by the input probabilities p; and the output
probabilities py; and p, = >.p JPe|s- In particular, the rate at which information can
be sent through the channel and reliably decoded at the output is given by the mutual
information I(in : out) = I(out) — I(out|in), where I(out) = — >, pelog, p; is the entropy
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of the output and I(outlin) = > ps(— > ,pe.s1l0gy s s) is the average entropy of the
output conditioned on the state of the input.

To maximize the amount of information that can be sent down the channel, Alice
and Bob need to maximize over both input states and over Bob’s measurement at the
output. The Schumacher-Holevo-Westmoreland theorem, however, considerably simplifies
the problem of maximizing the information transmission rate of the channel by obviating

the need to maximize over Bob’s measurements [37-39]. Define the quantity
X =50 pips)—>_ psS(ps), (56)
J J

where S(p) = —trplog, p. X is the difference between the entropy of the average output
state and the average entropy of the output states. The Schumacher-Holevo-Westmoreland
theorem then states that the capacity of the quantum channel for transmitting classical
information is given by the limit as lim,_,omin supX /n, where the supremum is taken
over all possible ensembles of input states {p,ps} over n uses of the channel.

For Bob to attain the channel capacity given by X', he must in general make entan-
gling measurements over the channel outputs, even when the channel is memoryless and
when Alice does not entangle her inputs. (An entangling measurement is one the leaves
the outputs in an entangled state after the measurement is made.) It would simplify the
process of finding the channel capacity still further if the optimization over input states
could be performed over a single use of the channel for memoryless channels, as is the case
for classical communication channels, rather than having to take the limit as the number
of inputs goes to infinity. If this were the case, then the channel capacity for memory-
less channels would be attained for Alice sending unentangled states down the channel.
Whether or not one is allowed to optimize over a single use for memoryless channels was
for many years one of the primary unsolved conjectures of quantum information theory.

Let’s state this conjecture precisely. Let &, be the maximum of X over n uses of a

memoryless channel. We then have the
Channel additivity conjecture: X,, = nXi.

Shor has shown that the channel additivity conjecture is equivalent to two other
additivity conjectures, the additivity of minimum output entropy and the additivity of
entanglement of formation [109]. Entanglement of formation was discussed in the section

on entanglement above. The minimum output entropy for n uses of a memoryless channel
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is simply the minimum over input states p,,, for n uses of the channel, of S(p,,), where p,

is the output state arising from the input p,,. We then have the

Minimum output entropy additivity conjecture: The minimum over p,, of S(p,) is equal to

n times the minimum over p; of S(p1).

Shor’s result shows that the channel additivity conjecture and the minimum output
entropy additivity conjecture are equivalent: each one implies the other. If these additiv-
ity conjectures could have been proved to be true, that would have resolved some of the
primary outstanding problems in quantum channel capacity theory. Remarkably, however,
Hastings recently showed that the minimum output entropy conjecture is false, by exhibit-
ing a channel whose minimum output entropy for multiple uses is achieved for entangled
inputs. As a result, the question of just how much classical information can be sent down
a quantum channel, and just which quantum channels are additive and which are not,

remains wide open.

Bosonic channels

The most commonly used quantum communication channel is the so-called bosonic
channel with Gaussian noise and loss [40]. Bosonic channels are ones that use bosons such
as photons or phonons to communicate. Gaussian noise and loss is the most common type
of noise and loss for such channels, it includes the effect of thermal noise, noise from linear
amplification, and leakage of photons or phonons out of the channel. It has been shown
that the capacity for bosonic channels with loss alone is attained by sending coherent states
down the channel [42]. Coherent states are the sort of states produced by lasers and are
the states that are currently used in most bosonic channels.

It has been conjectured that coherent states also maximize the capacity of quantum
communication channels with Gaussian noise as well as loss [43]. This conjecture, if true,
would establish the quantum-mechanical equivalent of Shannon’s theorem for the capacity
of classical channels with Gaussian noise and loss. The resolution of this conjecture can

be shown to be equivalent to the following, simpler conjecture:

Gaussian minimum output entropy conjecture: Coherent states minimize the output en-

tropy of bosonic channels with Gaussian noise and no loss.

The Gaussian minimum output entropy is intuitively appealing: an equivalent state-

ment is that the vacuum input state minimizes the output entropy for a channel with
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Gaussian noise. In other words, to minimize the output entropy of the channel, send noth-
ing. Despite its intuitive appeal, the Gaussian minimum output entropy conjecture has

steadfastly resisted proof for decades.

Entanglement assisted capacity

Just as quantum bits possess greater mathematical structure than classical bits, so
quantum channels possess greater variety than their classical counterparts. A classical
channel has but a single capacity. A quantum channel has one capacity for transmitting
quantum information (the coherent information), and another capacity for transmitting
classical information (the Holevo quantity X’). We can also ask about the capacity of a
quantum channel in the presence of prior entanglement.

The entanglement assisted capacity of a channel arises in the following situation.
Suppose that Alice and Bob have used their quantum channel to build up a supply of
entangled qubits, where Alice possesses half of the entangled pairs of qubits, and Bob
possesses the other half of the pairs. Now Alice sends Bob some qubits over the channel.
How much classical information can these qubits convey?

At first one might think that the existence of shared prior entanglement should have
no effect on the amount of information that Alice can send to Bob. After all, entanglement
is a form of correlation, and the existence of prior correlation between Alice and Bob in a
classical setting has no effect on the amount of information sent. In the quantum setting,
however, the situation is different.

Consider, for example, the case where Alice and Bob have a perfect, noiseless channel.
When Alice and Bob share no prior entanglement, then a single qubit sent down the
channel conveys exactly one bit of classical information. When Alice and Bob share prior
entanglement, however, a single quantum bit can convey more than one bit of classical
information. Suppose that Alice and Bob share an entangled pair in the singlet state
(1/v/2)([0) 4|1) B — |1)4]0)B). Alice then performs one of four actions on her qubit: either
she does nothing (performs the identity Id on the qubit), or she flips the qubit around the
z-axis (performs o), or she flips the qubit around the y-axis (performs o), she flips the
qubit around the z-axis (performs o).

Now Alice sends her qubit to Bob. Bob now possesses one of the four orthogonal states,
(1/v2)(10)al1) 5 = [1)al0)B), (1/v2)(I1)al1)5 — [0)4|0)5), (i/v2)(|1)al1)5 + |0)4]0)5),
(1/3/2)(|0) a|1) B + |1)4]0)B). By measuring which of these states he possesses, Bob can

determine which of the four actions Alice performed. That is, when Alice and Bob share
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prior entanglement, Alice can send two classical bits for each quantum bit she sends. This
phenomenon is known as superdense coding [111].

In general, the quantum channel connecting Alice to Bob is noisy. We can then ask,
given the form of the quantum channel, how much does the existence of prior entanglement
help Alice in sending classical information to Bob? The answer to this question is given
by the following theorem, due to Shor et al. The entanglement assisted capacity of a
quantum channel is equal to the maximum of the quantum mutual information between
the input and output of the channel [112]. The quantum mutual information is defined as
follows. Prepare a purification |¢)) 45 of an input state p and send the signal state S down
the channel, resulting the state pag as in equation (55) above. Defining ps = trapas,
pa = trspas, as before, the quantum mutual information is defined to be Ig(A : S) =
S(pa) + S(ps) — S(pas). The entanglement assisted capacity of the channel is obtained
by maximizing the quantum mutual information I (A : S) over input states p.

The entanglement assisted capacity of a quantum channel is greater than or equal
to the channel’s Holevo quantity, which is in turn greater than or equal to the channel’s
coherent information. Unlike the coherent information, which is known not to be additive
over many uses of the channel, or the Holevo quantity, which is suspected to be additive
but which has not been proved to be so, the entanglement assisted capacity is known to

be additive and so can readily be calculated for memoryless channels.

Teleportation

As mentioned in the introduction, one of the most strange and useful effects in quan-
tum computation is teleportation [46]. The traditional, science fiction picture of telepor-
tation works as follows.

An object such as an atom or a human being is placed in a device called a teleporter.
The teleporter makes complete measurements of the physical state of the object, destroying
it in the process. The detailed information about that physical state is sent to a distant
location, where a second teleporter uses that information to reconstruct an exact copy of
the original object.

At first, quantum mechanics would seem to make teleportation impossible. Quantum
measurements tend to disturb the object measured. Many identical copies of the object
are required to obtain even a rough picture of the underlying quantum state of the object.
In the presence of shared, prior entanglement, however, teleportation is in fact possible in

principle, and simple instances of teleportation have been demonstrated experimentally.
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A hint to the possibility of teleportation comes from the phenomenon of superdense
coding described in the previous section. If one qubit can be used to convey two classical
bits using prior entanglement, then maybe two classical bits might be used to convey one
qubit. This hope turns out to be true. Suppose that Alice and Bob each possess one qubit
out of an entangled pair of qubits (that is, they mutually possess one ‘e-bit’). Alice desires
to teleport the state |1) of another qubit. The teleportation protocol goes as follows.

First, Alice makes a Bell-state measurement on the qubit to be teleported together
with her half of the entangled pair. A Bell-state measurement on two qubits is one that
determines whether the two qubits are in one of the four states |pgo) = (1/4/2)(]01) —[10)),
Go1) = (1/v2)(100) — [11)), |é10) = (1/v/2)([00) + [11)), or |é11) = (1/v2)(|01) + [10)).
Alice obtains two classical bits of information as a result of her measurement, depending
on which |¢;;) the measurement revealed. She sends these two bits to Bob. Bob now
performs a unitary transformation on his half of the entangled qubit pair. If he receives
00, then he does nothing. If he receives 01, then he applies o, to flip his bit about the
z-axis. If he receives 10, then he applies o, to flip his bit about the y-axis. If he receives
11, then he applies o, to flip his bit about the z-axis. The result? After Bob has performed
his transformation conditioned on the two classical bits he received from Alice, his qubit
is now in the state [¢), up to an overall phase. Alice’s state has been teleported to Bob.

It might seem at first somewhat mysterious how this sequence of operations can
teleport Alice’s state to Bob. The mechanism of teleportation can be elucidated as fol-
lows. Write |¢)) = «|0); + 3]1);. Alice and Bob’s entangled pair is originally in the state
|p00)ap = (1/v/2)(|0)4]|1)s — [1)4|0)). The full initial state of qubit to be teleported

together with the entangled pair can then be written as

|v) |phioo) AB

= (a|0); + ﬁ|1>z)%

= 2\/—(|0> il a = [1)il0)a) @ (a]0)5 + 5[1)B)

7

7(|0> il0)a +[1)il1)a) @ (al1) 5 = 510)B)

ﬁ
= %(|¢00>iA @) B + |¢o1)ia ® 02 |V)B + [d10)ia @ ioy|h) B + |P11)ia ® 0. |¢) B).

(10)al1)B — [1)4]0)B)
(10)i]0)a — [1);|1) 4) ® (a|1) B + B|0) B) (57)
(10)s]1) 4 4 11)4]0) 4) ® (|0) B — B[1) B).

_|_
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When the initial state is written in this form, one sees immediately how the protocol works:
the measurement that Alice makes contains exactly the right information that Bob needs
to reproduce the state |1)) by performing the appropriate transformation on his qubit.
Teleportation is a highly useful protocol that lies at the center of quantum communi-
cation and fault tolerant quantum computation. There are several interesting features to
note. The two bits of information that Alice obtains are completely random: 00,01, 10, 11
all occur with equal probability. These bits contain no information about |¢) taken on
their own: it is only when combined with Bob’s qubit that those bits suffice to recreate [1)).
During the teleportation process, it is difficult to say just where the state |¢) ‘exists.” After
Alice has made her measurement, the state [¢)) is in some sense ‘spread out’ between her
two classical bits and Bob’s qubit. The proliferation of quotation marks in this paragraph
is a symptom of quantum weirdness: classical ways of describing things are inadequate to
capture the behavior of quantum things. The only way to see what happens to a quantum
system during a process like teleportation is to apply the mathematical rules of quantum

mechanics.

Quantum cryptography

A common problem in communication is security. Suppose that Alice and Bob wish
to communicate with each other with the secure knowledge that no eavesdropper (Eve) is
listening in. The study of secure communication is commonly called cryptography, since
to attain security Alice must encrypt her messages and Bob must decrypt them. The
no-cloning theorem together with the fact that if one measures a quantum system, one
typically disturbs it, implies that quantum mechanics can play a unique role in constructing
cryptosystems. There are a wide variety of quantum cryptographic protocols [49-51]. The
most common of these fall under the heading of quantum key distribution (QKD).

The most secure form of classical cryptographic protocols is the one-time pad. Here,
Alice and Bob each possess a random string of bits. This string is called the key. If no one
else possesses the key, then Alice and Bob can send messages securely as follows. Suppose
that Alice’s message has been encoded in bits in some conventional way (e.g., mapping
characters to ASCII bit strings). Alice encrypts the message by adding the bits of the key
to the bits of her message one by one, modulo 2 (i.e., without carrying). Because the key
was random, the resulting string possesses no statistical order left over from the original
message. Alice then sends the encrypted message to Bob, who decrypts it by adding the
key to the bits of the encrypted message, modulo 2. As long as no one other than Alice
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and Bob possess the shared key, this form of cryptography is completely secure. Alice and
Bob must be careful not to use the key more than once. If they use it twice or more, then

Eve can detect patterns in the encrypted messages.

The problem with the one-time pad is to distribute the keys to Alice and Bob and to
no one else. Classically, someone who intercepts the key can copy it and pass it on without
Alice and Bob detecting their copying. Quantum-mechanically, however, Alice and Bob

can set up key-distribution protocols that can detect and foil any eavesdropping.

The idea of quantum cryptography was proposed, in embryonic form, by Stephen
Wiesner in [49]. The first quantum cryptographic protocol was proposed by Bennett and
Brassard in 1984 and is commonly called BB84 [50]. The BB84 protocol together with its

variants is the one most commonly used by existing quantum cryptosystems.

In BB84, Alice sends Bob a sequence of qubits. The protocol is most commonly
described in terms of qubits encoded on photon polarization. Here, we will describe the
qubits in terms of spin, so that we can use the notation developed in section III. Spin 1/2 is
isomorphic to photon polarization and so the quantum mechanics of the protocol remains

the same.

Alice choses a sequence of qubits from the set {| 1),| |),| <),| —)} at random, and
sends that sequence to Bob. As he receives each qubit in turn, Bob picks at random either
the z-axis or the z-axis and measures the received qubit along that axis. Half of the time,

on average, Bob measures the qubit along the same axis along which it was prepared by
Alice.

Alice and Bob now check to see if Eve is listening in. Eve can intercept the qubits
Alice sends, make a measurement on them, and then send them on to Bob. Because she
does not know the axis along which any individual qubit has been prepared, however,
here measurement will inevitably disturb the qubits. Alice and Bob can then detect Eve’s

intervention by the following protocol.

Using an ordinary, insecure form of transmission, e.g., the telephone, Alice reveals to
Bob the state of some of the qubits that she sent. On half of those qubits, on average, Bob
measured them along the same axis along which they were sent. Bob then checks to see if
he measured those qubits to be in the same state that Alice sent them. If he finds them
all to be in the proper state, then he and Alice can be sure that Eve is not listening in. If
Bob finds that some fraction of the qubits are not in their proper state, then he and Alice

know that either the qubits have been corrupted by the environment in transit, or Eve is
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listening in. The degree of corruption is related to the amount of information that Eve
can have obtained: the greater the corruption, the more information Eve may have. From
monitoring the degree of corruption of the received qubits, Alice and Bob can determine
just how many bits of information Eve has obtained about their transmission.

Alice now reveals to Bob the axis along which she prepared the remainder of her qubits.
On half of those, on average, Bob measured using the same axis. If Eve is not listening,
those qubits on which Bob measured using the same axis along which Eve prepared them
now constitute a string of random bits that is shared by Alice and Bob and by them only.
This shared random string can then be used as a key for a one-time pad.

If Eve is listening in, then from their checking stage, Alice and Bob know just how
many bits out of their shared random string are also known by Eve. Alice and Bob
can now perform classical privacy amplification protocols [113] to turn their somewhat
insecure string of shared bits into a shorter string of shared bits that is more secure. Once
privacy amplification has been performed, Alice and Bob now share a key whose secrecy
is guaranteed by the laws of quantum mechanics.

Eve could, of course, intercept all the bits sent, measure them, and send them on.
Such a ‘denial of service’ attack prevents Alice and Bob from establishing a shared secret
key. No cryptographic system, not even a quantum one, is immune to denial of service
attacks: if Alice and Bob can exchange no information then they can exchange no secret
information! If Eve lets enough information through, however, then Alice and Bob can
always establish a secret key.

A variety of quantum key distribution schemes have been proposed [50-51]. Ekert
suggested using entangled photons to distribute keys to Alice and Bob. In practical quan-
tum key distribution schemes, the states sent are attenuated coherent states, consisting of
mostly vacuum with a small amplitude of single photon states, and an even smaller ampli-
tude of states with more than one photon. It is also possible to use continuous quantum
variables such as the amplitudes of the electric and magnetic fields to distribute quantum
keys [114-115]. To guarantee the full security of a quantum key distribution scheme requires
a careful examination of all possible attacks given the actual physical implementation of

the scheme.
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VII. Implications and Conclusions

Quantum information theory is a rich and fundamental field. Its origins lie with the
origins of quantum mechanics itself a century ago. The field has expanded dramatically
since the mid 1990s, due to the discovery of practical applications of quantum informa-
tion processing such as factoring and quantum cryptography, and because of the rapid
development of technologies for manipulating systems in a way that preserves quantum

coherence.

As an example of the rapid pace of development in the field of quantum information,
while this article was in proof, a new algorithm for solving linear sets of equations was dis-
covered [116]. Based on the quantum phase algorithm, this algorithm solves the following
problem: given a sparse matrix A and a vector l;, find a vector # such that A% = b. That
is, construct © = A~1b. If A is an n by n matrix, the best classical algorithms for solving
this problem run in time O(n). Remarkably, the quantum matrix inversion algorithm runs
in time O(logn), an exponential improvement: a problem that could take 102 — 101 op-
erations to solve on a classical computer could be solved on a quantum computer in fewer

than one hundred steps.

When they were developed in the mid twentieth century, the fields of classical com-
putation and communication provided unifying methods and themes for all of engineering
and science. So at the beginning of the twenty first century, quantum information is pro-
viding unifying concepts such as entanglement, and unifying techniques such as coherent
information processing and quantum error correction, that have the potential to transform

and bind together currently disparate fields in science and engineering.

Indeed, quantum information theory has perhaps even a greater potential to transform
the world than classical information theory. Classical information theory finds its greatest
application in the man-made systems such as electronic computers. Quantum information
theory applies not only to man-made systems, but to all physical systems at their most
fundamental level. For example, entanglement is a characteristic of virtually all physical
systems at their most microscopic levels. Quantum coherence and the relationship between
symmetries and the conservation and protection of information underlie not only quantum

information, but the behavior of elementary particles, atoms, and molecules.

When or whether techniques of quantum information processing will become tools of
mainstream technology is an open question. The technologies of precision measurement

are already fully quantum mechanical: for example, the atomic clocks that lie at the heart
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of the global positioning system (GPS) rely fundamentally on quantum coherence. Ubiqg-
uitous devices such as the laser and the transistor have their roots in quantum mechanics.
Quantum coherence is relatively fragile, however: until such a time as we can construct
robust, easily manufactured coherent systems, quantum information processing may have
its greatest implications at the extremes of physics and technology.

Quantum information processing analyzes the universe in terms of information: at
bottom, the universe is composed not just of photons, electrons, neutrinos and quarks,
but of quantum bits or qubits. Many aspects of the behavior of those elemental qubits
are independent of the particular physical system that registers them. By understanding
how information behaves at the quantum mechanical level, we understand the fundamental

behavior of the universe itself.
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