Problem Set 2

Problem 1

What are the eigenvalues and corresponding eigenvectors of σ_y ? Label the eigenvector of the larger eigenvalue $|\bigotimes\rangle$ and the other $|\odot\rangle$.

Problem 2

Check: $e^{-i\frac{\pi}{4}\sigma_y}|\uparrow\rangle = k_1|\rightarrow\rangle$, where $|\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$, $|\rightarrow\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$, and k_1 is a constant to be determined.

Problem 3

- 1. Check: $e^{-i\frac{\pi}{4}\sigma_z} | \rightarrow \rangle = | \bigotimes \rangle$,
- 2. Check: $e^{+i\frac{\pi}{4}\sigma_z}\left|\rightarrow\right> = \left|\bigodot\right>$, and

where $|\bigotimes\rangle$ and $|\odot\rangle$ are the eigenvectors of σ_y found in Problem 1.

Problem 4

Check:
$$e^{-i\frac{\pi}{2}\sigma_{\hat{j}}} |\uparrow\rangle = k_2 |\rightarrow\rangle$$
, where $\hat{j} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find k_2 .

Problem 5

Prove that $\rho^2 = \rho$ iff ρ is a pure state.