1) The key here is that we know \(M \), and \(1 \ll M \ll N \).

So, rather than applying the operations

\[|0\rangle \rightarrow \frac{1}{N} \sum_{i=1}^{N} |i\rangle = |s\rangle, \]

followed by \(\mathbb{I} - 2 |x\rangle \langle x| \)

followed by \(\mathbb{I} - 2 |s\rangle \langle s| = U_s \)

then repeating \(U_s U_\omega \) \(O(\sqrt{N/M}) \) times,

apply

\[|0\rangle \rightarrow |s\rangle \]

followed by

\[\mathbb{I} - 2 \sum_{j=1}^{M} |x_j\rangle \langle x_j| = U_\omega \]

followed by \(U_s \), and repeat

\[U_s U_\omega \quad O\left(\sqrt{\frac{N}{M}}\right) \text{ times} \]