Department of Mechanical Engineering
2.14 ANALYSIS AND DESIGN OF FEEDBACK CONTROL SYSTEMS

Fall Term 2003
Problem Set 1 Solution

Problem 1: (Nise, Ch. 1, Pr. 2)

Input
Transducer Controller Plant
Desired +
Teszre Thermostat EWOFP Signal Gain P Fuel Valve >
emperature
& Process

Sensor

Thermostat |«

Process Temperature

Problem 2: (Nise, Ch. 1, Pr. 5)
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Problem 3: Given the transfer function
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Taking the inverse Laplace transform (Nise, pp. 40, Table 2.1)
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(i)  The impulse response using Laplace transform.
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Taking the inverse Laplace transform (Nise, pp. 40, Table 2.1)
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Note that y;.,,(2) could be found by differentiating y.,(¢) with respect to ¢.



Problem 4: Given a car of mass m, driven by a force F(¢) and with viscous resistance B.

(a) Differential equation relating the car velocity v(z) to the applied force F(¢). Doing and
equilibrium of forces we obtain
dv(t)

dt

F(t)— Bv(t) =ma(t) and a(t) =

Rearranging terms
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(b) The value of the coefficient B can be found by using the homogeneous solution v,(?) to the
differential equation found in (a) and the initial condition v,.
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Given the initial condition v,=10m/s, the mass of the car m=1000kg and the speed v(¢)=0.2m/s at
t=8s,

B
-——(8) .
0.2 =10e 00 :B:—%ln(%):%ws/m

(¢) Closed-loop system block diagram
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where Car is described by the differential equation found in (@)

(d) To find the differential equation relating v(?) to Vyesirea(t), modify the equation found in (a) by
substituting F(2) =K (Viesirea(t)-v(t))
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rearranging terms
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(e) Transfer function is derived by taking the Laplace transform of the differential equation in (d)
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dt m m " .
Therefore
H(s) = V(s) _ K/m
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(f) The closed-loop system time constant z can be obtained from the closed-loop transfer
function found in (e)
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given K=100Ns/m, m=1000kg and B=489Ns/m, then 7=1.7s.

(g) The steady-state speed of the car on level ground is found using the Final Value Theorem
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substituting values: Vyesirea=00mph, K=100Ns/m, and B=489Ns/m

Vss=10.19mph

(h) To take into account the gravity effect on the system, let’s consider it as a disturbance D
applied between the controller and the car
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where Car is described by the transfer function
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The transfer function relating V(s) to Vesirea(s) was found previously in (e). The transfer function
relating V(s) to D(s) is found from the block diagram above with Vegirea(s)=0
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V(s)=H ., ($)=KV(s)+ D(s))=H ,(s) =

car

The steady-state speed of the car is found by superposition using the result from (g) and the
steady-state speed due to a step disturbance of magnitude D=-mgsin(15°)
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Substituting values and converting to mph,

Ves=10.19-9.64=0.55mph (barely moving!)

Problem 5:
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