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Computing the Matrix Exponential
The Cayley-Hamilton Method 1

The matrix exponential eAt forms the basis for the homogeneous (unforced) and the forced response
of LTI systems. We consider here a method of determining eAt based on the the Cayley-Hamiton
theorem.

Consider a square matrix A with dimension n and with a characteristic polynomial

∆(s) = |sI−A| = sn + cn−1s
n−1 + . . . + c0,

and define a corresponding matrix polynomial, formed by substituting A for s above

∆(A) = An + cn−1An−1 + . . . + c0I

where I is the identity matrix. The Cayley-Hamilton theorem states that every matrix satisfies its
own characteristic equation, that is

∆(A) ≡ [0]

where [0] is the null matrix. (Note that the normal characteristic equation ∆(s) = 0 is satisfied
only at the eigenvalues (λ1, . . . , λn)).

1 The Use of the Cayley-Hamilton Theorem to Reduce the Order
of a Polynomial in A

Consider a square matrix A and a polynomial in s, for example P (s). Let ∆(s) be the characteristic
polynomial of A. Then write P (s)in the form

P (s) = Q(s)∆(s) + R(s)

where Q(s) is found by long division, and the remainder polynomial R(s) is of degree (n − 1) or
less. At the eigenvalues s = λi, i = 1, . . . , n by definition ∆(s) = 0, so that

P (λi) = R(λi). (1)

Now consider the corresponding matrix polynomial P (A):

P (A) = Q(A)∆(A) + R(A)

But Cayley-Hamilton states that ∆(A) ≡ [0], therefore

P (A) = R(A). (2)

where the coefficients of R(A) may determined from Eq. (1), or by long division.
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Example

Reduce the order of P (A) = A4 + 3A3 + 2A2 + A + I for the matrix

A =

[
3 1
1 2

]

Solution:

∆(s) = |sI−A| = s2 − 5s + 5
P (s)
∆(s)

=
s4 + 3s3 + 2s2 + s + 1

s2 − 5s + 5

= s2 + 8s + 37 +
146s− 184
s2 − 5s + 5

P (s) = (s2 + 8s + 37)∆(s) + 146s− 184

or
R(s) = 146s− 184.

Then for the given A, P (A) = R(A), or

P (A) = A4 + 3A3 + 2A2 + A + I

= 146A− 184.

Summary: A matrix polynomial, of a matrix A of degree n, can always be expressed as a
polynomial of degree (n− 1) or less.

2 The Use of Cayley-Hamilton to Determine Analytic Functions
of a Matrix

Assume that a scalar function f(s) is analytic in a region of the complex plane. Then in that region
f(s) may be expressed as a polynomial

f(s) =
∞∑

k=0

βks
k.

Let A be a square matrix of dimension n, with characteristic polynomial ∆(s) and eigenvalues λi.
Then as above f(s) may be written

f(s) = ∆(s)Q(s) + R(s)

where R(s) is of degree (n− 1) or less. In particular, for s = λi

f(λi) = R(λi)

=
n−1∑

k=0

αkλ
k
i (3)

Since the λi, i = 1 . . . n are known, Eq. (3) defines a set of simultaneous linear equations that will
generate the coefficients α0, . . . , αn−1.
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The matrix function f(A is defined to have the same series expansion as f(s), that is

f(A) =
∞∑

k=0

βks
k

= ∆(A)
∞∑

k=0

βks
k + R(A)

= R(A)

by Cayley-Hamilton, since ∆(A) ≡ [0]. then

f(A) =
n−1∑

k=0

αkAk (4)

where the αi’s may be found from Eq. (3).

Thus the defined analytic function of a matrix A of dimension n may be expressed as a
polynomial of degree (n− 1) or less.

Example

Find sin(A) where

A =

[
−3 1
0 −2

]
.

Solution: For A
∆(s) = |sI−A| = (s + 2)(s + 3)

giving λ1 = −3 and λ1 = −2. Since n = 2, R(s) must be of degree 1 or less.

Let R(s) = α0 + α1s. and from Eq. (3)

sin(λ1) = α0 + α1λ1

sin(λ2) = α0 + α1λ2.

Substituting for λ1 and λ2, and solving for α0 and α2 gives

α0 = 3 sin(−2)− 2 sin(−3)
α1 = sin(−2)− sin(−3).

Substituting in Eq. (4) gives

sin(A) = (3 sin(−2)− 2 sin(−3))I + (sin(−2)− sin(−3))A

or

sin

[
−3 1
0 −2

]
=

[
sin(−3) sin(−2)− sin(−3)

0 sin(−2)

]
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3 Computation of the Matrix Exponential eAt

The matrix exponential is simply one case of an analytic function as described above.

eAt =
n−1∑

k=0

αkAk (5)

where the αi’s are determined from the set of equations given by the eigenvalues of A.

eλit =
n−1∑

k=0

αkλ
k
i (6)

Example

Find eAt for

A =

[
0 1
−2 −3

]
.

Solution: The characteristic equation is s2 + 3s + 2 = 0, and the eigenvalues are
λ1 = −1, λ2 = −2. From Eq. (5)

eAt = α0I + α1A

From Eq. (6), for λ1 = −1 and λ2 = −2

e−t = α0 − α1

e−2t = α0 − 2α1,

or α0 = (2e−t − e−t) and α1 = (e−t − e−2t). Then

eAt = (2e−t − e−t)I + (e−t − e−2t)A

=

[
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]

Example

Find eAt for

A =

[
0 1
−1 0

]
.

Solution: The characteristic equation is s2 + 1 = 0, and the eigenvalues are λ1 = +j,
λ2 = −j. From Eq. (5)

eAt = α0I + α1A

From Eq. (6), for λ1 = +j and λ2 = −j

ejt = cos(t) + j sin(t) = α0 + α1j

e−jt = cos(t)− j sin(t) = α0 − α1j,

or α0 = cos(t) and α1 = sin(t). Then

eAt = cos(t)I + sin(t)A

=

[
cos(t) sin(t)
− sin(t) cos(t)

]
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Note: If one or more of the eigenvalues is repeated (λi = λj , i 6= j, then Eqs. (6) will yield two
or more identical equations, and therefore will not be a set of n independent equations.

For an eigenvalue of multiplicity m, the first (m − 1) derivatives of ∆(s) all vanish at the
eigenvalues, therefore

f(λi) =
(n−1)∑

k=0

αkλ
k
i = R(λi)

df

dλ

∣∣∣∣
λ=λi

=
dR

dλ

∣∣∣∣
λ=λi

...
...

dm−1f

dλm−1

∣∣∣∣∣
λ=λi

=
dm−1R

dλm−1

∣∣∣∣∣
λ=λi

form a set of m linearly independent equations, which when combined with the others will yield
the required set os n equations to solve for the α’s.
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