MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING
 2.151 Advanced System Dynamics and Control

Computing the Matrix Exponential The Cayley-Hamilton Method ${ }^{1}$

The matrix exponential $e^{\mathbf{A t}}$ forms the basis for the homogeneous (unforced) and the forced response of LTI systems. We consider here a method of determining $e^{\mathbf{A t}}$ based on the the Cayley-Hamiton theorem.

Consider a square matrix \mathbf{A} with dimension n and with a characteristic polynomial

$$
\Delta(s)=|s \mathbf{I}-\mathbf{A}|=s^{n}+c_{n-1} s^{n-1}+\ldots+c_{0}
$$

and define a corresponding matrix polynomial, formed by substituting \mathbf{A} for s above

$$
\Delta(\mathbf{A})=\mathbf{A}^{n}+c_{n-1} \mathbf{A}^{n-1}+\ldots+c_{0} \mathbf{I}
$$

where \mathbf{I} is the identity matrix. The Cayley-Hamilton theorem states that every matrix satisfies its own characteristic equation, that is

$$
\Delta(\mathbf{A}) \equiv[\mathbf{0}]
$$

where $[\mathbf{0}]$ is the null matrix. (Note that the normal characteristic equation $\Delta(s)=0$ is satisfied only at the eigenvalues $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$).

1 The Use of the Cayley-Hamilton Theorem to Reduce the Order of a Polynomial in A

Consider a square matrix \mathbf{A} and a polynomial in s, for example $P(s)$. Let $\Delta(s)$ be the characteristic polynomial of \mathbf{A}. Then write $P(s)$ in the form

$$
P(s)=Q(s) \Delta(s)+R(s)
$$

where $Q(s)$ is found by long division, and the remainder polynomial $R(s)$ is of degree $(n-1)$ or less. At the eigenvalues $s=\lambda_{i}, i=1, \ldots, n$ by definition $\Delta(s)=0$, so that

$$
\begin{equation*}
P\left(\lambda_{i}\right)=R\left(\lambda_{i}\right) \tag{1}
\end{equation*}
$$

Now consider the corresponding matrix polynomial $P(\mathbf{A})$:

$$
P(\mathbf{A})=Q(\mathbf{A}) \Delta(\mathbf{A})+R(\mathbf{A})
$$

But Cayley-Hamilton states that $\Delta(\mathbf{A}) \equiv[\mathbf{0}]$, therefore

$$
\begin{equation*}
P(\mathbf{A})=R(\mathbf{A}) \tag{2}
\end{equation*}
$$

where the coefficients of $R(\mathbf{A})$ may determined from Eq. (1), or by long division.

[^0]
Example

Reduce the order of $P(\mathbf{A})=\mathbf{A}^{4}+3 \mathbf{A}^{3}+2 \mathbf{A}^{2}+\mathbf{A}+\mathbf{I}$ for the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\Delta(s) & =|s \mathbf{I}-\mathbf{A}|=s^{2}-5 s+5 \\
\frac{P(s)}{\Delta(s)} & =\frac{s^{4}+3 s^{3}+2 s^{2}+s+1}{s^{2}-5 s+5} \\
& =s^{2}+8 s+37+\frac{146 s-184}{s^{2}-5 s+5} \\
P(s) & =\left(s^{2}+8 s+37\right) \Delta(s)+146 s-184
\end{aligned}
$$

or

$$
R(s)=146 s-184
$$

Then for the given $\mathbf{A}, P(\mathbf{A})=R(\mathbf{A})$, or

$$
\begin{aligned}
P(\mathbf{A}) & =\mathbf{A}^{4}+3 \mathbf{A}^{3}+2 \mathbf{A}^{2}+\mathbf{A}+\mathbf{I} \\
& =146 \mathbf{A}-184 .
\end{aligned}
$$

Summary: A matrix polynomial, of a matrix \mathbf{A} of degree n, can always be expressed as a polynomial of degree $(n-1)$ or less.

2 The Use of Cayley-Hamilton to Determine Analytic Functions of a Matrix

Assume that a scalar function $f(s)$ is analytic in a region of the complex plane. Then in that region $f(s)$ may be expressed as a polynomial

$$
f(s)=\sum_{k=0}^{\infty} \beta_{k} s^{k} .
$$

Let \mathbf{A} be a square matrix of dimension n, with characteristic polynomial $\Delta(s)$ and eigenvalues λ_{i}. Then as above $f(s)$ may be written

$$
f(s)=\Delta(s) Q(s)+R(s)
$$

where $R(s)$ is of degree $(n-1)$ or less. In particular, for $s=\lambda_{i}$

$$
\begin{align*}
f\left(\lambda_{i}\right) & =R\left(\lambda_{i}\right) \\
& =\sum_{k=0}^{n-1} \alpha_{k} \lambda_{i}^{k} \tag{3}
\end{align*}
$$

Since the $\lambda_{i}, i=1 \ldots n$ are known, Eq. (3) defines a set of simultaneous linear equations that will generate the coefficients $\alpha_{0}, \ldots, \alpha_{n-1}$.

The matrix function f (\mathbf{A} is defined to have the same series expansion as $f(s)$, that is

$$
\begin{aligned}
f(\mathbf{A}) & =\sum_{k=0}^{\infty} \beta_{k} s^{k} \\
& =\Delta(\mathbf{A}) \sum_{k=0}^{\infty} \beta_{k} s^{k}+R(\mathbf{A}) \\
& =R(\mathbf{A})
\end{aligned}
$$

by Cayley-Hamilton, since $\Delta(\mathbf{A}) \equiv[\mathbf{0}]$. then

$$
\begin{equation*}
f(\mathbf{A})=\sum_{k=0}^{n-1} \alpha_{k} \mathbf{A}^{k} \tag{4}
\end{equation*}
$$

where the α_{i} 's may be found from Eq. (3).
Thus the defined analytic function of a matrix \mathbf{A} of dimension n may be expressed as a polynomial of degree $(n-1)$ or less.

- Example

Find $\sin (\mathbf{A})$ where

$$
\mathbf{A}=\left[\begin{array}{cc}
-3 & 1 \\
0 & -2
\end{array}\right]
$$

Solution: For A

$$
\Delta(s)=|s \mathbf{I}-\mathbf{A}|=(s+2)(s+3)
$$

giving $\lambda_{1}=-3$ and $\lambda_{1}=-2$. Since $n=2, R(s)$ must be of degree 1 or less.
Let $R(s)=\alpha_{0}+\alpha_{1} s$. and from Eq. (3)

$$
\begin{aligned}
\sin \left(\lambda_{1}\right) & =\alpha_{0}+\alpha_{1} \lambda_{1} \\
\sin \left(\lambda_{2}\right) & =\alpha_{0}+\alpha_{1} \lambda_{2} .
\end{aligned}
$$

Substituting for λ_{1} and λ_{2}, and solving for α_{0} and α_{2} gives

$$
\begin{aligned}
& \alpha_{0}=3 \sin (-2)-2 \sin (-3) \\
& \alpha_{1}=\sin (-2)-\sin (-3) .
\end{aligned}
$$

Substituting in Eq. (4) gives

$$
\sin (\mathbf{A})=(3 \sin (-2)-2 \sin (-3)) \mathbf{I}+(\sin (-2)-\sin (-3)) \mathbf{A}
$$

or

$$
\sin \left[\begin{array}{cc}
-3 & 1 \\
0 & -2
\end{array}\right]=\left[\begin{array}{cc}
\sin (-3) & \sin (-2)-\sin (-3) \\
0 & \sin (-2)
\end{array}\right]
$$

3 Computation of the Matrix Exponential $e^{\mathbf{A t}}$

The matrix exponential is simply one case of an analytic function as described above.

$$
\begin{equation*}
e^{\mathbf{A} t}=\sum_{k=0}^{n-1} \alpha_{k} \mathbf{A}^{k} \tag{5}
\end{equation*}
$$

where the α_{i} 's are determined from the set of equations given by the eigenvalues of \mathbf{A}.

$$
\begin{equation*}
e^{\lambda_{i} t}=\sum_{k=0}^{n-1} \alpha_{k} \lambda_{i}^{k} \tag{6}
\end{equation*}
$$

- Example

Find $e^{\mathbf{A} t}$ for

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]
$$

Solution: The characteristic equation is $s^{2}+3 s+2=0$, and the eigenvalues are $\lambda_{1}=-1, \lambda_{2}=-2$. From Eq. (5)

$$
e^{\mathbf{A} t}=\alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{A}
$$

From Eq. (6), for $\lambda_{1}=-1$ and $\lambda_{2}=-2$

$$
\begin{aligned}
e^{-t} & =\alpha_{0}-\alpha_{1} \\
e^{-2 t} & =\alpha_{0}-2 \alpha_{1}
\end{aligned}
$$

or $\alpha_{0}=\left(2 e^{-t}-e^{-t}\right)$ and $\alpha_{1}=\left(e^{-t}-e^{-2 t}\right)$. Then

$$
\begin{aligned}
e^{\mathbf{A} t} & =\left(2 e^{-t}-e^{-t}\right) \mathbf{I}+\left(e^{-t}-e^{-2 t}\right) \mathbf{A} \\
& =\left[\begin{array}{cc}
2 e^{-t}-e^{-2 t} & e^{-t}-e^{-2 t} \\
-2 e^{-t}+2 e^{-2 t} & -e^{-t}+2 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

Example

Find $e^{\mathbf{A} t}$ for

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Solution: The characteristic equation is $s^{2}+1=0$, and the eigenvalues are $\lambda_{1}=+j$, $\lambda_{2}=-j$. From Eq. (5)

$$
e^{\mathbf{A} t}=\alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{A}
$$

From Eq. (6), for $\lambda_{1}=+j$ and $\lambda_{2}=-j$

$$
\begin{aligned}
e^{j t} & =\cos (t)+j \sin (t)=\alpha_{0}+\alpha_{1} j \\
e^{-j t} & =\cos (t)-j \sin (t)=\alpha_{0}-\alpha_{1} j
\end{aligned}
$$

or $\alpha_{0}=\cos (t)$ and $\alpha_{1}=\sin (t)$. Then

$$
\begin{aligned}
e^{\mathbf{A} t} & =\cos (t) \mathbf{I}+\sin (t) \mathbf{A} \\
& =\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
\end{aligned}
$$

Note: If one or more of the eigenvalues is repeated $\left(\lambda_{i}=\lambda_{j}, i \neq j\right.$, then Eqs. (6) will yield two or more identical equations, and therefore will not be a set of n independent equations.

For an eigenvalue of multiplicity m, the first $(m-1)$ derivatives of $\Delta(s)$ all vanish at the eigenvalues, therefore

$$
\begin{aligned}
f\left(\lambda_{i}\right) & =\sum_{k=0}^{(n-1)} \alpha_{k} \lambda_{i}^{k}=R\left(\lambda_{i}\right) \\
\left.\frac{d f}{d \lambda}\right|_{\lambda=\lambda_{i}} & =\left.\frac{d R}{d \lambda}\right|_{\lambda=\lambda_{i}} \\
\vdots & \vdots \\
\left.\frac{d^{m-1} f}{d \lambda^{m-1}}\right|_{\lambda=\lambda_{i}} & =\left.\frac{d^{m-1} R}{d \lambda^{m-1}}\right|_{\lambda=\lambda_{i}}
\end{aligned}
$$

form a set of m linearly independent equations, which when combined with the others will yield the required set os n equations to solve for the α 's.

[^0]: ${ }^{1}$ D. Rowell 10/16/04

