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Review of First- and Second-Order System Response1

1 First-Order Linear System Transient Response

The dynamics of many systems of interest to engineers may be represented by a simple model
containing one independent energy storage element. For example, the braking of an automobile,
the discharge of an electronic camera flash, the flow of fluid from a tank, and the cooling of a cup
of coffee may all be approximated by a first-order differential equation, which may be written in a
standard form as

τ
dy

dt
+ y(t) = f(t) (1)

where the system is defined by the single parameter τ , the system time constant, and f(t) is a
forcing function. For example, if the system is described by a linear first-order state equation and
an associated output equation:

ẋ = ax + bu (2)
y = cx + du. (3)

and the selected output variable is the state-variable, that is y(t) = x(t), Eq. (3) may be rearranged

dy

dt
− ay = bu, (4)

and rewritten in the standard form (in terms of a time constant τ = −1/a), by dividing through
by −a:

−1
a

dy

dt
+ y(t) = − b

a
u(t) (5)

where the forcing function is f(t) = (−b/a)u(t).
If the chosen output variable y(t) is not the state variable, Eqs. (2) and (3) may be combined

to form an input/output differential equation in the variable y(t):

dy

dt
− ay = d

du

dt
+ (bc− ad) u. (6)

To obtain the standard form we again divide through by −a:

−1
a

dy

dt
+ y(t) = −d

a

du

dt
+

ad− bc

a
u(t). (7)

Comparison with Eq. (1) shows the time constant is again τ = −1/a, but in this case the forcing
function is a combination of the input and its derivative

f(t) = −d

a

du

dt
+

ad− bc

a
u(t). (8)

In both Eqs. (5) and (7) the left-hand side is a function of the time constant τ = −1/a only, and
is independent of the particular output variable chosen.
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Example 1

A sample of fluid, modeled as a thermal capacitance Ct, is contained within an insulating
vacuum flask. Find a pair of differential equations that describe 1) the temperature of
the fluid, and 2) the heat flow through the walls of the flask as a function of the external
ambient temperature. Identify the system time constant.
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Figure 1: A first-order thermal model representing the heat exchange between a laboratory vacuum
flask and the environment.

Solution: The walls of the flask may be modeled as a single lumped thermal resistance
Rt and a linear graph for the system drawn as in Fig. 1. The environment is assumed
to act as a temperature source Tamb(t). The state equation for the system, in terms of
the temperature TC of the fluid, is

dTC

dt
= − 1

RtCt
TC +

1
RtCt

Tamb(t). (i)

The output equation for the flow qR through the walls of the flask is

qR =
1
Rt

TR

= − 1
Rt

TC +
1
Rt

Tamb(t). (ii)

The differential equation describing the dynamics of the fluid temperature TC is found
directly by rearranging Eq. (i):

RtCt
dTC

dt
+ TC = Tamb(t). (iii)

from which the system time constant τ may be seen to be τ = RtCt.

The differential equation relating the heat flow through the flask is
dqR

dt
+

1
RtCt

qR =
1
Rt

dTamb

dt
. (iv)

This equation may be written in the standard form by dividing both sides by 1/RtCt,

RtCt
dqR

dt
+ qR = Ct

dTamb

dt
, (v)

and by comparison with Eq. (7) it can be seen that the system time constant τ =
RtCt and the forcing function is f(t) = CtdTamb/dt. Notice that the time constant is
independent of the output variable chosen.
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1.1 The Homogeneous Response and the First-Order Time Constant

The standard form of the homogeneous first-order equation, found by setting f(t) ≡ 0 in Eq. (1),
is the same for all system variables:

τ
dy

dt
+ y = 0 (9)

and generates the characteristic equation:

τλ + 1 = 0 (10)

which has a single root, λ = −1/τ . The system response to an initial condition y(0) is

yh(t) = y(0)eλt = y(0)e−t/τ . (11)
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Figure 2: Response of a first-order homogeneous equation τ ẏ + y(t) = 0. The effect of the system
time constant τ is shown for stable systems (τ > 0) and unstable systems (τ < 0).

A physical interpretation of the time constant τ may be found from the initial condition response
of any output variable y(t). If τ > 0, the response of any system variable is an exponential decay
from the initial value y(0) toward zero, and the system is stable. If τ < 0 the response grows
exponentially for any finite value of y0, as shown in Fig. 1.1, and the system is unstable. Although
energetic systems containing only sources and passive linear elements are usually stable, it is possible
to create instability when an active control system is connected to a system. Some sociological and
economic models exhibit inherent instability. The time-constant τ , which has units of time, is the
system parameter that establishes the time scale of system responses in a first-order system. For
example a resistor-capacitor circuit in an electronic amplifier might have a time constant of a few
microseconds, while the cooling of a building after sunset may be described by a time constant of
many hours.

It is common to use a normalized time scale, t/τ , to describe first-order system responses. The
homogeneous response of a stable system is plotted in normalized form in Fig. 3, using both the
normalized time and also a normalized response magnitude y(t)/y(0):

y(t)/y(0) = e−(t/τ). (12)
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Figure 3: Normalized unforced response of a stable first-order system.

Time −t/τ y(t)/y(0) = e−t/τ ys(t) = 1− e−t/τ

0 0.0 1.0000 0.0000

τ 1.0 0.3679 0.6321

2τ 2.0 0.1353 0.8647

3τ 3.0 0.0498 0.9502

4τ 4.0 0.0183 0.9817

Table 1: Exponential components of first-order system responses in terms of normalized time t/τ.

The third column of Table 1 summarizes the homogeneous response after periods t = τ, 2τ, . . . After
a period of one time constant (t/τ = 1) the output has decayed to y(τ) = e−1y(0) or 36.8% of its
initial value, after two time constants the response is y(2τ) = 0.135y(0).

Several first-order mechanical and electrical systems and their time constants are shown in Fig.
4. For the mechanical mass-damper system shown in Fig. 4a, the velocity of the mass decays from
any initial value in a time determined by the time constant τ = m/B, while the unforced deflection
of the spring shown in Fig. 4b decays with a time constant τ = B/K. In a similar manner the
voltage on the capacitor in Fig. 4c will decay with a time constant τ = RC, and the current in
the inductor in Fig. 4d decays with a time constant equal to the ratio of the inductance to the
resistance τ = L/R. In all cases, if SI units are used for the element values, the units of the time
constant will be seconds.
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Figure 4: Time constants of some typical first-order systems.

Example 2

A water tank with vertical sides and a cross-sectional area of 2 m2, shown in Fig. 5, is
fed from a constant displacement pump, which may be modeled as a flow source Qin(t).
A valve, represented by a linear fluid resistance Rf , at the base of the tank is always
open and allows water to flow out. In normal operation the tank is filled to a depth of

v a l v e
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C f
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Q   ( t )

p     =  pr e f

R C ffi n

Q   ( t )i n

a t m

Figure 5: Fluid tank example

1.0 m. At time t = 0 the power to the pump is removed and the flow into the tank is
disrupted.

If the flow through the valve is 10−6 m3/s when the pressure across it is 1 N/m2,
determine the pressure at the bottom of the tank as it empties. Estimate how long it
takes for the tank to empty.
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Solution: The tank is represented as a fluid capacitance Cf with a value:

Cf =
A

ρg
(i)

where A is the area, g is the gravitational acceleration, and ρ is the density of water.
In this case Cf = 2/(1000× 9.81) = 2.04× 10−4 m5/n and Rf = 1/10−6 = 106 N-s/m5.

The linear graph generates a state equation in terms of the pressure across the fluid
capacitance PC(t):

dPC

dt
= − 1

RfCf
PC +

1
Cf

Qin(t) (ii)

which may be written in the standard first-order form

RfCf
dPC

dt
+ PC = RfQin(t). (iii)

The time constant is τ = RfCf . When the pump fails the input flow Qin is set to zero,
and the system is described by the homogeneous equation

RfCf
dPC

dt
+ PC = 0. (iv)

The homogeneous pressure response is (from Eq. (11)):

PC(t) = PC(0)e−t/Rf Cf . (v)

With the given parameters the time constant is τ = RfCf = 204 seconds, and the
initial depth of the water h(0) is 1 m; the initial pressure is therefore PC(0) = ρgh(0) =
1000 × 9.81 × 1 N/m2. With these values the pressure at the base of the tank as it
empties is

PC(t) = 9810e−t/204 N/m2 (vi)

which is the standard first-order form shown in Fig. 3.

The time for the tank to drain cannot be simply stated because the pressure asymptot-
ically approaches zero. It is necessary to define a criterion for the complete decay of the
response; commonly a period of t = 4τ is used since y(t)/y(0) = e−4 < 0.02 as shown
in Table 1. In this case after a period of 4τ = 816 seconds the tank contains less than
2% of its original volume and may be approximated as empty.

1.2 The Characteristic Response of First-Order Systems

In standard form the input/output differential equation for any variable in a linear first-order
system is given by Eq. (1):

τ
dy

dt
+ y = f(t). (13)

The only system parameter in this differential equation is the time constant τ . The solution with
the given f(t) and the initial condition y(0) = 0 is defined to be the characteristic first-order
response.
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The first-order homogeneous solution is of the form of an exponential function yh(t) = e−λt

where λ = 1/τ . The total response y(t) is the sum of two components

y(t) = yh(t) + yp(t)

= Ce−t/τ + yp(t) (14)

where C is a constant to be found from the initial condition y(0) = 0, and yp(t) is a particular
solution for the given forcing function f(t). In the following sections we examine the form of y(t)
for the ramp, step, and impulse singularity forcing functions.

1.2.1 The Characteristic Unit Step Response

The unit step us(t) is commonly used to characterize a system’s response to sudden changes in its
input. It is discontinuous at time t = 0:

f(t) = us(t) =

{
0 t < 0,
1 t ≥ 0.

The characteristic step response ys(t) is found by determining a particular solution for the step
input using the method of undetermined coefficients. From Table 8.2, with a constant input for
t > 0, the form of the particular solution is yp(t) = K, and substitution into Eq. (13) gives K = 1.
The complete solution ys(t) is

ys(t) = Ce−t/τ + 1. (15)

The characteristic response is defined when the system is initially at rest, requiring that at t = 0,
ys(0) = 0. Substitution into Eq. (14) gives 0 = C + 1, so that the resulting constant C = −1. The
unit step response of a system defined by Eq. (13) is:

ys(t) = 1− e−t/τ . (16)

Equation (16) shows that, like the homogeneous response, the time dependence of the step response
depends only on τ and may expressed in terms of a normalized time scale t/τ . The unit step char-
acteristic response is shown in Fig. 6, and the values at normalized time increments are summarized
in the fourth column of Table 1. The response asymptotically approaches a steady-state value

yss = lim
t→∞ ys(t) = 1. (17)

It is common to divide the step response into two regions,

(a) a transient region in which the system is still responding dynamically, and

(b) a steady-state region, in which the system is assumed to have reached its final value yss.

There is no clear division between these regions but the time t = 4τ , when the response is within 2%
of its final value, is often chosen as the boundary between the transient and steady-state responses.

The initial slope of the response may be found by differentiating Eq. (16) to yield:

dy

dt

∣∣∣∣
t=0

=
1
τ
. (18)

The step response of a first-order system may be easily sketched with knowledge of (1) the system
time constant τ , (2) the steady-state value yss, (3) the initial slope ẏ(0), and (4) the fraction of the
final response achieved at times equal to multiples of τ .
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Figure 6: The step response of a first-order system described by τ ẏ + y = us(t).

1.2.2 The Characteristic Impulse Response

The impulse function δ(t) is defined as the limit of a pulse of duration T and amplitude 1/T as T
approaches zero, and is used to characterize the response of systems to brief transient inputs. The
impulse may be considered as the derivative of the unit step function.

The derivative property of linear systems allows us to find the characteristic impulse response
yδ(t) by simply differentiating the characteristic step response ys(t). When the forcing function
f(t) = δ(t) the characteristic response is

yδ(t) =
dys

dt
=

d

dt

(
1− e−t/τ

)

=
1
τ
e−t/τ for t ≥ 0. (19)

The characteristic impulse response is an exponential decay, similar in form to the homogeneous
response. It is discontinuous at time t = 0 and has an initial value y(0+) = 1/τ , where the super-
script 0+ indicates a time incrementally greater than zero. The response is plotted in normalized
form in Fig. 7.

1.2.3 The Characteristic Ramp Response

The unit ramp ur(t) = t for t ≥ 0 is the integral of the unit step function us(t):

ur(t) =
∫ t

0
us(t)dt. (20)

The integration property of linear systems (Section 8.4.4) allows the characteristic response yr(t)
to a ramp forcing function f(t) = ur(t) to be found by integrating the step response ys(t):

yr(t) =
∫ t

0
ys(t)dt =

∫ t

0

(
1− e−t/τ

)
dt

= t− τ
(
1− e−t/τ

)
(21)
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Figure 7: The impulse response of a first-order system described by τ ẏ + y = δ(t).

and is plotted in Fig. 8. As t becomes large the exponential term decays to zero and the response
becomes

yr(t) ≈ t− τ for t À τ. (22)

1.3 System Input/Output Transient Response

In the previous section we examined the system response to particular forms of the forcing function
f(t). We now return to the solution of the complete most general first-order differential equation,
Eq. (7):

τ
dy

dt
+ y(t) = q1

du

dt
+ q0u(t) (23)

where τ = −1/a, q1 = −d/a and q2 = (ad− bc)/a are constants defined by the system parameters.
The forcing function in this case is a superposition of the system input u(t) and its derivative:

f(t) = q1
du

dt
+ q0u(t).

The superposition principle for linear systems allows us to compute the response separately for each
term in the forcing function, and to combine the component responses to form the overall response
y(t). In addition, the differentiation property of linear systems allows the response to the derivative
of an input to be found by differentiating the response to that input. These two properties may be
used to determine the overall input/output response in two steps:

(1) Find the characteristic response yu(t) of the system to the forcing function f(t) = u(t), that
is solve the differential equation:

τ
dyu

dt
+ yu(t) = u(t), (24)

(2) Form the output as a combination of the output and its derivative:

y(t) = q1
dyu

dt
+ q0yu(t). (25)
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Figure 8: The ramp response of a first-order system described by τ ẏ + y = ur(t).

The characteristic responses yu(t) are by definition zero for time t < 0. If there is a discontinuity in
yu(t) at t = 0, as in the case for the characteristic impulse response yδ(t) (Eq. (19)), the derivative
dyu/dt contains an impulse component, for example

d

dt
yδ(t) =

1
τ
δ(t)− 1

τ2
e−t/τ (26)

and if q1 6= 0 the response y(t) will contain an impulse function.

1.3.1 The Input/Output Step Response

The characteristic response for a unit step forcing function, f(t) = us(t), is (Eq. (16)):

ys(t) =
(
1− e−t/τ

)
for t > 0.

The system input/output step response is found directly from Eq. (25):

y(t) = q1
d

dt

(
1− e−t/τ

)
+ q0

(
1− e−t/τ

)

= q0

[
1−

(
1− q1

q0τ

)
e−t/τ

]
. (27)

If q1 6= 0 the output is discontinuous at t = 0, and y(0+) = q1/τ . The steady-state response yss is

yss = lim
t→∞ y(t) = q0. (28)

The output moves from the initial value to the final value with a time constant τ .

1.3.2 The Input/Output Impulse Response

The characteristic impulse response yδ(t) found in Eq. (19) is

yδ(t) =
1
τ
e−t/τ fort ≥ 0

10



Input u(t) Characteristic Response Input/Output Response y(t) for t ≥ 0

u(t) = 0 y(t) = y(0)e−t/τ

u(t) = ur(t) yr(t) = t− τ
(
1− e−t/τ

)
y(t) =

[
q0t + (q1 − q0τ)

(
1− e−t/τ

)]

u(t) = us(t) ys(t) = ys(t) = 1− e−t/τ y(t) =
[
q0 −

(
q0 − q1

τ

)
e−t/τ

]

u(t) = δ(t) yδ(t) =
1
τ
e−t/τ y(t) =

q1

τ
δ(t) +

(
q0

τ
− q1

τ2

)
e−t/τ

Table 2: The response of the first-order linear system τ ẏ + y = q1u̇+ q0u for the singularity inputs.

with a discontinuity at time t = 0. Substituting into Eq. (25)

y(t) = q1
dyδ

dt
+ q0yδ(t)

=
q1

τ
δ(t) +

(
q0

τ
− q1

τ2

)
e−t/τ , (29)

where the impulse is generated by the discontinuity in yδ(t) at t = 0 as shown in Eq. (26).

1.3.3 The Input/Output Ramp Response

The characteristic response to a unit ramp r(t) = t is

yr(t) = t− τ
(
1− e−t/τ

)

and using Eq. (21) the response is:

y(t) = q1
d

dt

[(
t− τ

(
1− e−t/τ

))
us(t)

]
+ q0

(
t− τ

(
1− e−t/τ

))
us(t)

=
[
q0t + (q1 − q0τ)

(
1− e−t/τ

)]
us(t). (30)

1.4 Summary of Singularity Function Responses

Table 2 summarizes the homogeneous and forced responses of the first-order linear system de-
scribed by the classical differential equation

τ
dy

dx
+ y = q1

du

dt
+ q0u (31)

for the three commonly used singularity inputs.
The response of a system with a non-zero initial condition, y(0), to an input u(t) is the sum of

the homogeneous component due to the initial condition, and a forced component computed with
zero initial condition, that is

ytotal(t) = y(0)e−t/τ + yu(t), (32)

where yu(t) is the response of the system to the given input u(t) if the system was originally at
rest.
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The response to an input that is a combination of inputs for which the response is known may
be found by adding the individual component responses using the principle of superposition. The
following examples illustrate the use of these solution methods.

Example 3

A mass m = 10 kg is at rest on a horizontal plane with viscous friction coefficient
B = 20 N-s/m, as shown in Fig. 9. A short impulsive force of amplitude 200 N and
duration 0.01 s is applied. Determine how far the mass travels before coming to rest,
and how long it takes for the velocity to decay to less than 1% of its initial value.

Solution: The differential equation relating the velocity of the mass to the applied

v m

F ( t ) m mBF ( t )

v     =  0r e f
B

0 . 0 1

F ( t )
2 0 0

t

Figure 9: A mass element subjected to an impulsive force.

force is
m

B

dvm

dt
+ vm =

1
B

Fin(t) (i)

The system time constant is τ = m/B = 10/20 = 0.5 seconds. The duration of the force
pulse is much less than the time constant, and so it is reasonable to approximate the
input as an impulse of strength (area) 200× .01 = 2 N-s. The system impulse response
(Eq. (29) is

vm(t) =
1
m

e−Bt/m (ii)

so that if u(t) = 2δ(t) N-s the response is

vm(t) = 0.2e−2t. (iii)

The distance x traveled may be computed by integrating the velocity

x =
∫ ∞

0
0.2e−2tdt = 0.1 m. (iv)

The time T for the velocity to decay to less than 1% of its original value is found by
solving vm(T )/vm(0) = 0.01 = e−2T , or T = 2.303 seconds.

Example 4

A disk flywheel J of mass 8 Kg and radius 0.5 m is driven by an electric motor that
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produces a constant torque of Tin = 10 N-m. The shaft bearings may be modeled
as viscous rotary dampers with a damping coefficient of BR = 0.1 N-m-s/rad. If the
flywheel is at rest at t = 0 and the power is suddenly applied to the motor, compute
and plot the variation in speed of the flywheel, and find the maximum angular velocity
of the flywheel.

T   ( t )

W    =  0r e f

J
B Ri n

T   ( t )i n
W

b e a r i n g
f l y w h e e l

J
B R

Figure 10: Rotary flywheel system and its linear graph

Solution: The state equation for the system may be found directly from the linear
graph in Fig. 10:

dΩJ

dt
= −BR

J
ΩJ +

1
J

Tin(t), (i)

which in the standard form is

J

BR

dΩJ

dt
+ ΩJ =

1
BR

Tin(t). (ii)

For the flywheel J = mr2/2 = 1 kg-m2, and the time constant is

τ =
J

BR
= 10 s. (iii)

The characteristic response to a unit step in the forcing function is

ys(t) = 1− e−t/10 (iv)

and by the principle of superposition, when the forcing function is scaled so that f(t) =
(Tin/BR)us(t), the output is similarly scaled:

ΩJ(t) =
Tin

BR

(
1− e−(BR/J)t

)
= 100

(
1− e−t/10

)
. (v)

The steady-state angular velocity is

Ωss = lim
t→∞ΩJ(t) = Tin/BR = 100 rad/s (vi)

and the angular velocity reaches 98% of this value in t = 4τ = 40 seconds. The step
response is shown in Fig. 11.
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Figure 11: Response of the rotary flywheel system to a constant torque input, with initial condition
ΩJ(0) = 0, in Example 4

Example 5

During normal operation the flywheel drive system described in Example 4 is driven by
a programmed torque source that produces a torque profile as shown in Fig. 12. The
torque is ramped up to a maximum of 20 N-m over a period of 100 seconds, held at
a constant value for 25 seconds and then reduced to zero. Find the resulting angular
velocity of the shaft.

0
5

1 0
1 5
2 0

0 5 0 1 0 0 1 5 0

T   ( t )i n

t
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Figure 12: Rotary flywheel system and the input torque function specified in Example 5.

Solution: From Example 4 the differential equation describing the system is

J

BR

dΩJ

dt
+ ΩJ =

1
BR

Tin(t), (i)
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and with the values given (J = 1 Kg-m2 and BR = 0.1 N-m-s/rad)

10
dΩJ

dt
+ ΩJ = 10Tin(t), (ii)

The torque input shown in Fig. 12 may be written as a sum of unit ramp and step
singularity functions

Tin(t) = 0.2ur(t)− 0.2ur(t− 100)− 200us(t− 125). (iii)

The response may be determined in three time intervals

(1) Initially 0 ≤ t < 100 when the input is effectively Tin(t) = 0.2ur(t),

(2) for 100 ≤ t < 125 seconds when the input is Tin(t) = 0.2ur(t)− 0.2ur(t− 100), and

(3) for t ≥ 125 when Tin(t) = 0.2ur(t)− 0.2ur(t− 100)− 20us(t− 125).

From Table 2 the response in the three intervals may be written

0 ≤ t < 100 s:
ΩJ(t) = 2

[
t− 10

(
1− e−t/10

)]
rad/s,

100 ≤ t < 125 s:

ΩJ(t) = 2
[
t− 10

(
1− e−t/10

)]

−2
[
(t− 100)− 10

(
1− e−(t−100)/10

)]
rad/s,

t > 125 s:

ΩJ(t) = 2
[
t− 10

(
1− e−t/10

)]

−2
[
(t− 100)− 10

(
1− e−(t−100)/10

)]
rad/s,

−200
[
1−

(
1− e−(t−125)/10

)]

The total response is plotted in Fig. 13.

Example 6

The first-order electrical circuit shown in Fig. 14 is known as a “lead” network and is
commonly used in electronic control systems. Find the response of the system to an
input pulse of amplitude 1 volt and duration 10 ms if R1 = R2 = 10, 000 ohms and
C = 1.0 µfd. Assume that at time t = 0 the output voltage is zero. Solution: From
the linear graph the state variable is the voltage on the capacitor vc(t), and the output
is the voltage across R2. The state equation for the system is

dvc

dt
= −R1 + R2

R1R2C
vc +

1
R2C

Vin(t) (i)
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Figure 13: Response of the rotary flywheel system to the torque input profile Tin(t) = 0.2ur(t) −
0.2ur(t− 100)− 20us(t) N-m, with initial condition ΩJ(0) = 0 rad/s.
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Figure 14: Electrical lead network and its linear graph.

and the output equation is

vo(t) = vR2 = −vc + Vin(t), (ii)

The input/output differential equation is

R1R2C

R1 + R2

dvo

dt
+ vo =

R1R2C

R1 + R2

dVin

dt
+

R1

R1 + R2
Vin. (iii)

with the system time constant τ = R1R2C/(R1 + R2) = 5× 10−3 seconds.

The input pulse duration (10 ms) is comparable to the system time constant, and
therefore it is not valid to approximate the input as an impulse. The pulse input can,
however, be written as the sum of two unit step functions

Vin(t) = us(t)− us(t− 0.01) (iv)

and the response determined in two separate intervals (1) 0 ≤ t < 0.01 s where the
input is us(t), and (2) t ≥ 0.01 s, where both components contribute.
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The input/output unit step response is given by Eq. (27),

vo(t) =
R2

R1 + R2
−

(
R2

R1 + R2
− 1

)
e−t/τ

=
R2

R1 + R2
+

R1

R1 + R2
e−t/τ

=
(
0.5 + 0.5e−t/0.005

)
for t ≥ 0. (v)

At time t = 0+ the initial response is vo(0+) = 1 volt, and the steady-state response
(v0)ss = 0.5 volt. The settling time is approximately 4τ , or about 20 ms.

The response to the 10 ms duration pulse may be found from Eqs. (iv) and (v) by using
the principle of superposition:

vpulse(t) = vo(t)− v0(t− .01). (vi)

In the interval 0 ≤ t < 0.01, the initial condition is zero and the response is:

vpulse(t) =
(
0.5 + 0.5e−t/0.005

)
, (vii)

in the second interval t ≥ .01 , when the input is Vin = us(t)− us(t− .01), the response
is the sum of two step responses:

vpulse(t) =
(
0.5 + 0.5e−t/0.005

)
−

(
0.5 + 0.5e−(t−0.01)/0.005

)

= 0.5
(
et/.005 − e−(t−.01)/.005

)

= 0.5et/0.005
(
1− e2

)
= −3.195e−t/.005 V. (viii)

The step response (Eq. (v)) and the pulse response described by Eqs. (vii) and (viii)
are plotted in Fig. 15.

2 Second-Order System Transient Response

Second-order state determined systems are described in terms of two state variables. Physical
second-order system models contain two independent energy storage elements which exchange
stored energy, and may contain additional dissipative elements; such models are often used to
represent the exchange of energy between mass and stiffness elements in mechanical systems; be-
tween capacitors and inductors in electrical systems, and between fluid inertance and capacitance
elements in hydraulic systems. In addition second-order system models are frequently used to rep-
resent the exchange of energy between two independent energy storage elements in different energy
domains coupled through a two-port element, for example energy may be exchanged between a
mechanical mass and a fluid capacitance (tank) through a piston, or between an electrical induc-
tance and mechanical inertia as might occur in an electric motor. Engineers often use second-order
system models in the preliminary stages of design in order to establish the parameters of the energy
storage and dissipation elements required to achieve a satisfactory response.

Second-order systems have responses that depend on the dissipative elements in the system.
Some systems are oscillatory and are characterized by decaying, growing, or continuous oscillations.
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Figure 15: Response of the electrical lead network to a unit step in input voltage and to a unit
amplitude pulse of duration 10 ms.

Other second order systems do not exhibit oscillations in their responses. In this section we define
a pair of parameters that are commonly used to characterize second-order systems, and use them
to define the the conditions that generate non-oscillatory, decaying or continuous oscillatory, and
growing (or unstable) responses.

In the following sections we transform the two state equations into a single differential equation
in the output variable of interest, and then express this equation in a standard form.

2.0.1 Transformation of State Equations to a Single Differential Equation

The state equations ẋ = Ax + Bu for a linear second-order system with a single input are a pair
of coupled first-order differential equations in the two state variables:

[
ẋ1

ẋ2

]
=

[
a11 a12

a21 a22

] [
x1

x2

]
+

[
b1

b2

]
u. (33)

or

dx1

dt
= a11x1 + a12x2 + b1u

dx2

dt
= a21x1 + a22x1 + b2u. (34)

The state-space system representation may be transformed into a single differential equation in
either of the two state-variables. Taking the Laplace transform of the state equations

(sI−A)X(s) = BU(s)
X(s) = (sI−A)−1BU(s)

=
1

det [sI−A]

[
s− a22 a12

a21 s− a11

] [
b1

b2

]
U(s)
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det [sI−A]X(s) =

[
s− a22 a12

a21 s− a11

] [
b1

b2

]
U(s)

from which

d2x1

dt2
− (a11 + a22)

dx1

dt
+ (a11a22 − a12a21) x1 = b1

du

dt
+ (a12b2 − a22b1)u. (35)

and
d2x2

dt2
− (a11 + a22)

dx2

dt
+ (a11a22 − a12a21) x2 = b2

du

dt
+ (a21b1 − a11b2)u. (36)

which can be written in terms of the two parameters ωn and ζ

d2x1

dt2
+ 2ζωn

dx1

dt
+ ω2

nx1 = b1
du

dt
+ (a12b2 − a22b1)u (37)

d2x2

dt2
+ 2ζωn

dx2

dt
+ ω2

nx2 = b2
du

dt
+ (a21b1 − a11b2)u. (38)

where ωn is defined to be the undamped natural frequency with units of radians/second, and ζ is
defined to be the system (dimensionless) damping ratio. These definitions may be compared to
Eqs. (35) and (36), to give the following relationships:

ωn =
√

a11a22 − a12a21 (39)

ζ = − 1
2ωn

(a11 + a22)

=
− (a11 + a22)

2
√

a11a22 − a12a21
. (40)

The undamped natural frequency and damping ratio play important roles in defining second-order
system responses, similar to the role of the time constant in first-order systems, since they com-
pletely define the system homogeneous equation.

Example 7

Determine the differential equations in the state variables x1(t) and x2(t) for the system
[

ẋ1

ẋ2

]
=

[
−1 −2

2 −3

] [
x1

x2

]
+

[
1
0

]
u. (i)

Find the undamped natural frequency ωn and damping ratio ζ for this system. Solution:

For this system

[sI −A] =

[
s + 1 2
−2 s + 3

]
(ii)

and
det [sI −A] = s2 + 4s + 7

and therefore for state variable x1(t):

d2x1

dt2
+ 4

dx1

dt
+ 7x1 =

du

dt
+ 3u. (iii)
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and for x2(t):
d2x2

dt2
+ 4

dx2

dt
+ 7x2 = 2u. (iv)

By inspection of either Eq. (iii) or Eq. (iv), ω2
n = 7, and 2ζωn = 4, giving ωn =

√
7

rad/s, and ζ = 2/
√

7 = 0.755.

2.0.2 Generation of a Differential Equation in an Output Variable

The output equation y = Cx + Du for any system variable is a single algebraic equation:

y(t) =
[

c1 c2

] [
x1

x2

]
+ [d] u(t)

= c1x1(t) + c2x2(t) + du(t). (41)

and in the Laplace domain

Y (s) =
(
C(sI−A)−1B + D

)
U(s)

=
1

det [sI−A]
(Cadj(sI−A) + det [sI−A]D)

The determinants may be expanded and the resulting equation written as a differential equation:

d2y

dt2
− (a11 + a22)

dy

dt
+ (a11a22 − a12a21) y = q2

d2u

dt2
+ q1

du

dt
+ q0u (42)

or in terms of the standard system parameters

d2y

dt2
+ 2ζωn

dy

dt
+ ω2

ny = q2
d2u

dt2
+ q1

du

dt
+ q0u (43)

where the coefficients q0, q1, and q2 are

q0 = c1 (−a22b1 + a12b2) + c2 (−a11b2 + a21b1) + d (a11a22 − a12a21)
q1 = c1b1 + c2b2 − d (a11 + a22)
q2 = d. (44)

Notice that the left hand side of the differential equation is the same for all system variables, and
that the only difference between any of the differential equations describing any system variable is
in the constant coefficients q2, q1 and q0 on the right hand side.

Example 8

A rotational system consists of an inertial load J mounted in viscous bearings B, and
driven by an angular velocity source Ωin(t) through a long light shaft with significant
torsional stiffness K, as shown in the Fig. 16. Derive a pair of second-order differential
equations for the variables ΩJ and ΩK .
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Figure 16: Rotational system for Example 8.

Solution: The state variables are ΩJ , and TK , and the state and output equations are
[

Ω̇j

Ṫk

]
=

[
−B/J 1/J
−K 0

] [
ΩJ

TK

]
+

[
0
K

]
Ωin. (i)

[
ΩJ

ΩK

]
=

[
1 0
−1 0

] [
ΩJ

TK

]
+

[
0
1

]
(ii)

In this case there are two outputs and the transfer function matrix is

H(s) = C [sI−A]−1 B + D

=
Cadj [sI−A]B + D

det [sI−A]

=




K/J

s2 + (B/J)s + K/J
s2 + (B/J)s

s2 + (B/J)s + K/J


 (iii)

The required differential equations are therefore

d2ΩJ

dt2
+

B

J

dΩJ

dt
+

K

J
ΩJ =

K

J
Ωin. (iv)

and
d2ΩK

dt2
+

B

J

dΩK

dt
+

K

J
ΩK =

d2Ωin

dt2
+

B

J

dΩin

dt
. (v)

The undamped natural frequency and damping ratio are found from either differen-
tial equation. For example, from Eq. (v) ω2

n = K/J and 2ζωn = B/J . From these
relationships

ωn =

√
K

J
and ζ =

B/J

2
√

K/J
=

B

2
√

KJ
. (vi)

2.1 Solution of the Homogeneous Second-Order Equation

For any system variable y(t) in a second-order system, the homogeneous equation is found by
setting the input u(t) ≡ 0 so that Eq. (43) becomes

d2y

dt2
+ 2ζωn

dy

dt
+ ω2

ny = 0. (45)
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The solution, yh(t), to the homogeneous equation is found by assuming the general exponential
form

yh(t) = C1e
λ1t + C2e

λ2t (46)

where C1 and C2 are constants defined by the initial conditions, and the eigenvalues λ1 and λ2 are
the roots of the characteristic equation

det [sI−A] = λ2 + 2ζωnλ + ω2
n = 0, (47)

found using the quadratic formula:

λ1, λ2 = −ζωn ± ωn

√
ζ2 − 1. (48)

If ζ = 1, the two roots are equal (λ1 = λ2 = λ), a modified form for the homogeneous solution is
necessary:

yc(t) = C1e
λt + C2te

λt (49)

In either case the homogeneous solution consists of two independent exponential components, with
two arbitrary constants, C1 and C2, whose values are selected to make the solution satisfy a given
pair of initial conditions. In general the value of the output y(0) and its derivative ẏ(0) at time
t = 0 are used to provide the necessary information.

The initial conditions for the output variable may be specified directly as part of the problem
statement, or they may have to be determined from knowledge of the state variables x1(0) and
x2(0) at time t = 0. The homogeneous output equation may be used to compute y(0) directly from
elements of the A and C matrices,

y(0) = c1x1(0) + c2x2(0), (50)

and the value of the derivative ẏ(0) may be determined by differentiating the output equation and
substituting for the derivatives of the state variables from the state equations:

ẏ(0) = c1ẋ1(0) + c2ẋ2(0)
= c1 (a11x1(0) + a12x2(0)) + c2 (a21x1(0) + a22x2(0)) . (51)

To illustrate the influence of damping ratio and natural frequency on the system response,
we consider the response of an unforced system output variable with initial output conditions of
y(0) = y0, and ẏ(0) = 0. If the roots of the characteristic equation are distinct, imposing these
initial conditions on the general solution of Eq. (46) gives:

y(0) = y0 = C1 + C2

dy

dt

∣∣∣∣
t=0

= 0 = λ1C1 + λ2C2. (52)

With the result that
C1 =

λ2

λ2 − λ1
y0 and C2 =

λ1

λ1 − λ2
y0. (53)

For this set of initial conditions the homogeneous solution is therefore

yh(t) = y0

[(
λ2

λ2 − λ1

)
eλ1t +

(
λ1

λ1 − λ2

)
eλ2t

]
(54)

= y0
λ1λ2

λ2 − λ1

[
1
λ1

eλ1t − 1
λ2

eλ2t
]
. (55)
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Figure 17: Homogeneous response of an overdamped and critically damped second-order system
for the initial condition y(0) = 1, and ẏ(0) = 0.

If the roots of the characteristic equation are identical λ1 = λ2 = λ, the solution is based on
Eq. (49) and is:

yh(t) = y0

[
eλt − λteλt

]
. (56)

The system response depends directly on the values of the damping ratio ζ and the undamped
natural frequency ωn. Four separate cases are described below:

Overdamped System (ζ > 1): When the damping ratio ζ is greater than one, the two roots of
the characteristic equation are real and negative:

λ1, λ2 = ωn

(
−ζ ±

√
ζ2 − 1

)
. (57)

From Eq. (55) the homogeneous response is

yh(t) = y0

[
−ζ +

√
ζ2 − 1

2
√

ζ2 − 1
e

(
−ζ−

√
ζ2−1

)
ωnt − −ζ −√

ζ2 − 1
2
√

ζ2 − 1
e

(
−ζ+

√
ζ2−1

)
ωnt

]
(58)

which is the sum of two decaying real exponentials, each with a different decay rate that defines a
time constant

τ1 = − 1
λ1

, τ2 = − 1
λ2

. (59)

The response exhibits no overshoot or oscillation, and is known as an overdamped response. Figure
17 shows this response as a function of ζ using a normalized time scale of ωnt.

Critically Damped System (ζ = 1): When the damping ratio ζ = 1 the roots of the charac-
teristic equation are real and identical,

λ1 = λ2 = −ωn. (60)

The solution to the initial condition response is found from Eq. (56):

yh(t) = y0

[
e−ωnt + ωnte−ωnt

]
(61)
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which is shown in Figure 17. This response form is known as a critically damped response because it
marks the transition between the non-oscillatory overdamped response and the oscillatory response
described in the next paragraph.

Underdamped System (0 ≤ ζ < 1): When the damping ratio is greater than or equal to zero
but less than 1, the two roots of the characteristic equation are complex conjugates with negative
real parts:

λ1, λ2 = −ζωn ± jωn

√
1− ζ2 = −ζωn ± jωd (62)

where j =
√−1, and where ωd is defined to be the damped natural frequency:

ωd = ωn

√
1− ζ2 (63)

The response may be determined by substituting the values of the roots in Eq. (62) into Eq. (55):

yh(t) = y0

[(−ζωn − jωd

−2jωd

)
e(−ζωn+jωd)t +

(−ζωn + jωd

2jωd

)
e(−ζωn−jωd)t

]

= y0e
−ζωnt

[
e+jωdt + e−jωdt

2
+

(
ζωn

ωd

)
ejωdt − e−jωdt

2j

]
. (64)

When the Euler identities cosα =
(
e+jα + e−jα

)
/2 and sinα =

(
e+jα − e−jα

)
/2j are substituted

the solution is:

yh(t) = y0e
−ζωnt

[
cosωdt +

ζωn

ωd
sinωdt

]

= y0
e−ζωnt

√
1− ζ2

cos(ωdt− ψ) (65)

where the phase angle ψ is

ψ = tan−1 ζ√
1− ζ2

. (66)

The initial condition response for an underdamped system is a damped cosine function, oscillating
at the damped natural frequency ωd with a phase shift ψ, and with the rate of decay determined
by the exponential term e−ζωnt. The response for underdamped second-order systems are plotted
against normalized time ωnt for several values of damping ratio in Figure 18.

For damping ratios near unity, the response decays rapidly with few oscillations, but as the
damping is decreased, and approaches zero, the response becomes increasingly oscillatory. When
the damping is zero, the response becomes a pure oscillation

yh(t) = y0 cos (ωnt) , (67)

and persists for all time. (The term “undamped natural frequency” for ωn is derived from this
situation, because a system with ζ = 0 oscillates at a frequency of ωn.) As the damping ratio
increases from zero, the frequency of oscillation ωd decreases, as shown by Eq. (63), until at a
damping ratio of unity, the value of ωd = 0 and the response consists of a sum of real decaying
exponentials.

The decay rate of the amplitude of oscillation is determined by the exponential term e−ζωnt. It
is sometimes important to determine the ratio of the oscillation amplitude from one cycle to the
next. The cosine function is periodic and repeats with a period Tp = 2π/ωd, so that if the response
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Figure 18: Normalized initial condition response of an underdamped second-order system as a
function of the damping ratio ζ.

at an arbitrary time t is compared with the response at time t + Tp, an amplitude decay ratio DR
may be defined as:

DR =
y(t + Tp)

y(t)
provided y(t) 6= 0

=
e−ζωn(t+2π/ωd)

e−ζωnt

= e−2πζ/
√

1−ζ2
(68)

The decay ratio is unity if the damping ratio is zero, and decreases as the damping ratio increases,
reaching a value of zero as the damping ratio approaches unity.

Unstable System (ζ < 0): If the damping ratio is negative, the roots to the characteristic
equation have positive real parts, and the real exponential term in the solution, Eq. (46), grows in an
unstable fashion. When −1 < ζ < 0, the response is oscillatory with an overall exponential growth
in amplitude, as shown in Figure 19, while the solution for ζ < −1 grows as a real exponential.

Example 9

Many simple mechanical systems may be represented by a mass coupled through spring
and damping elements to a fixed position as shown in Figure 20. Assume that the
mass has been displaced from its equilibrium position and is allowed to return with no
external forces acting on it. We wish to (1) find the response of the system model from
an initial displacement so as to determine whether the mass returns to its equilibrium
position with no overshoot, (2) to determine the maximum velocity that it reaches. In
addition we wish (3) to determine which system parameter we should change in order
to guarantee no overshoot in the response. The values of system parameters are m = 2
kg, K = 8 N/m, B = 1.0 N-s/m and the initial displacement y0 = 0.1 m.
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Figure 19: A typical unstable oscillatory response of a second-order system when the damping ratio
ζ is negative.

Solution: From the linear graph model in Figure 20 the two state variables are the

v m

F ( t ) m

B

mBF ( t )

v     =  0r e f

K
K

y

Figure 20: Second-order mechanical system.

velocity of mass x1 = vm, and the force in the spring x2 = FK . The state equations for
the system, with an input force Fin(t) acting on the mass are:

[
v̇m

ḞK

]
=

[
−B/m −1/m

K 0

] [
vm

FK

]
+

[
1/m

0

]
Fin(t). (i)

The output variable y is the position of the mass, which can be found from the consti-
tutive relation for the force in the spring FK = Ky and therefore the output equation:

y (t) = (0) vm +
(

1
K

)
FK + (0)Fin(t). (ii)

The characteristic equation is

det [λI−A] = det

[
λ + B/m 1/m
−K λ

]
= 0, (iii)

or
λ2 +

B

m
λ +

K

m
= 0. (iv)
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The undamped natural frequency and damping ratio are therefore

ωn =

√
K

m
, and ζ =

B

2mωn
=

B

2
√

Km
. (v)

With the given system parameters, the undamped natural frequency and damping ratio
are

ωn =
√

8
2

= 2 rad/s, ζ =
1

4× 2
= 0.125.

Because the damping ratio is positive but less than unity, the system is stable but
underdamped; the response yh(t) is oscillatory and therefore exhibits overshoot. The
solution is given directly by Eq. (65):

yh(t) = y0
e−ζωnt

√
1− ζ2

cos(ωdt− ψ), (vi)

and when the computed values of ωd and ψ are substituted,

ωd = ωn

√
1− ζ2 = 2

√
1− (.125)2 = 1.98 rad/s,

and
ψ = tan−1 0.125√

1− (.125)2
= 0.125 r,

the response is:
yh(t) = 0.101e−.25t cos(1.98t− 0.125) m. (vii)

The response is plotted in Fig. 21a, where it can be seen that the mass displacement
response y(t) overshoots the equilibrium position by almost 0.1 m, and continues to
oscillate for several cycles before settling to the equilibrium position.

The velocity of the mass vm(t) is related to the displacement y(t) by differentiation of
Eq. (vi),

vm(t) =
d

dt
yh(t) = − y0ωn√

1− ζ2
e−ζωnt sinωdt. (viii)

The velocity response is plotted in Figure 21b, where the maximum value of the velocity
is found to be -0.17 m/s at a time of 0.75 s.

In order to achieve a displacement response with no overshoot, an increase in the system
damping is required to make ζ ≥ 1. Since the damping ratio ζ is directly proportional
to B, the value of the viscous damping parameter B would have to be increased by a
factor of 8, that is to B = 8 N-s/m to achieve critical damping. With this value the
response is given by Eq. (61):

y(t) = 0.1
(
e−2t + 2te−2t

)
(ix)

The critically damped displacement response is also plotted in Figure 21a, showing that
there is no overshoot.

As before, the velocity of the mass may be found by differentiating the position response

v(t) = 0.1
(
−2e−2t + 2e−2t + 4te−2t

)
= 0.4te−2t (x)
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Figure 21: The displacement (a) and velocity (b) response of the mechanical second-order system.
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The velocity response is plotted in Figure 21b where it can be seen that it reaches
a maximum value of 0.075 m/s at a time of 0.5 s. The maximum velocity in the
critically damped case is less than 45% of the maximum velocity when the damping
ratio ζ = 0.125.

2.2 Characteristic Second-Order System Transient Response

2.2.1 The Standard Second-Order Form

The input-output differential equation in any variable y(t) in a linear second-order system is given
by Eq. (43):

d2y

dt2
+ 2ζωn

dy

dt
+ ω2

ny = q2
d2u

dt2
+ q1

du

dt
+ q0u,

where the coefficients q0, q1, and q2 are defined in Eqs. (44). Because the input u(t) is a known
function of time, a forcing function

f(t) = q2
d2u

dt2
+ q1

du

dt
+ q0u (69)

may be defined. The forced response of a second-order system described by Eq. (43) may be
simplified by considering in detail the behavior of the system to various forms of the forcing function
f(t). We therefore begin by examining the response of the system

d2y

dt2
+ 2ζωn

dy

dt
+ ω2

ny = f(t). (70)

The response of this standard system form defines a characteristic response for any variable in the
system. The derivative, scaling, and superposition properties of linear systems allow the response
of any system variable yi(t) to be derived directly from the response y(t):

yi(t) = q2
d2y

dt2
+ q1

dy

dt
+ q0y(t). (71)

In the sections that follow, the response of the standard form to the unit step, ramp, and impulse
singularity functions are derived with the assumption that the system is at rest at time t = 0, that
is y(0) = 0 and ẏ(0) = 0. The generalization of the results to responses of systems with derivatives
on the right hand side is straightforward.

2.2.2 The Step Response of a Second-Order System

We start by deriving the response ys(t) of the standard system, Eq. (70), to a step of unit amplitude.
The forced differential equation is:

d2ys

dt2
+ 2ζωn

dys

dt
+ ω2

nys = us(t), (72)

where us(t) is the unit step function.
The solution to Eq. (71) is the sum of the homogeneous response and a particular solution. For

the case of distinct roots of the characteristic equation, λ1 and λ2, the total solution is

ys(t) = yh(t) + yp(t)
= C1e

λ1t + C2e
λ2t + yp(t). (73)
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The particular solution may be found using the method of undetermined coefficients, we take
yp(t) = K and substitute into the differential equation giving

ω2
nK = 1 (74)

or
ys(t) = C1e

λ1t + C2e
λ2t +

1
ω2

n

. (75)

The constants C1 and C2 are chosen to satisfy the two initial conditions:

ys(0) = C1 + C2 +
1
ω2

n

= 0 (76)

dys

dt

∣∣∣∣
t=0

= C1λ1 + C2λ2 = 0, (77)

which may be solved to give:

C1 =
λ2

ω2
n (λ1 − λ2)

, C2 =
λ1

ω2
n (λ2 − λ1)

. (78)

The solution for the unit step response when the roots are distinct is therefore:

ys(t) =
1
ω2

n

[
1−

(
λ2

λ2 − λ1
eλ1t +

λ1

λ1 − λ2
eλ2t

)]
(79)

=
1
ω2

n

[
1− λ2λ1

λ2 − λ1

(
1
λ1

eλ1t − 1
λ2

eλ2t
)]

(80)

It can be seen that the second and third terms in Eq. (80) are identical to those in the homogeneous
response, Eq. (55), so that the solution may be written for the overdamped case as:

ys(t) =
1
ω2

n

[
1− 1

τ2 − τ1

(
τ2e

−t/τ2 − τ1e
−t/τ1

)]
for ζ > 1, (81)

where τ1 = −1/λ1 and τ2 = −1/λ2 are time constants as previously defined.
For the underdamped case, when λ1 = −ζωn + jωn

√
1− ζ2 and λ1 = ζωn − jωn

√
1− ζ2, from

Eq. (65) the solution is:

ys(t) =
1
ω2

n

[
1− e−ζωnt

√
1− ζ2

cos(ωdt− ψ)

]
for 0 < ζ < 1. (82)

where as before the phase angle ψ = tan−1
(
ζ/

√
1− ζ2

)
.

When the roots of the characteristic equation are identical (ζ = 1) and λ1 = λ2 = −ωn, the
homogeneous solution has a modified form, and the total solution is:

ys(t) = C1e
λt + C2te

λt +
1
ω2

n

. (83)

The solution which satisfies the initial conditions is:

ys(t) =
1
ω2

n

[
1− eλt + λteλt

]

=
1
ω2

n

[
1− e−ωnt − ωnte−ωnt

]
for ζ = 1. (84)
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In all three cases the response settles to a steady equilibrium value as time increases. We define
the steady-state response as

yss = lim
t→∞ ys(t) =

1
ω2

n

. (85)

The second-order system step response is a function of both the system damping ratio ζ and the
undamped natural frequency ωn. The step responses of stable second-order systems are plotted in
Figure 22 in terms of non-dimensional time ωnt, and normalized amplitude y(t)/yss.
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Figure 22: Step response of stable second-order systems with the differential equation ÿ + 2ζωnẏ +
ω2

ny = u(t).

For damping ratios less than one, the solutions are oscillatory and overshoot the steady-state
response. In the limiting case of zero damping the solution oscillates continuously about the steady-
state solution yss with a maximum value of ymax = 2yss and a minimum value of ymin = 0, at a
frequency equal to the undamped natural frequency ωn. As the damping is increased, the amplitude
of the overshoot in the response decreases, until at critical damping, ζ = 1, the response reaches
steady-state with no overshoot. For damping ratios greater than unity, the response exhibits no
overshoot, and as the damping ratio is further increased the response approaches the steady-state
value more slowly.
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Example 10

The electric circuit in Figure 23 contains a current source driving a series inductive and
resistive load with a shunt capacitor across the load. The circuit is representative of
motor drive systems and induction heating systems used in manufacturing processes.
Excessive peak currents during transients in the input could damage the inductor. We
therefore wish to compute response of the current through the inductor to a step in the
input current to ensure that the manufacturers stated maximum current is not exceeded
during start up. The circuit parameters are L = 10−4 h, C = 10−8 fd, and R = 50
ohms. Assume that the maximum step in the input current is to be 1.0 amp.

C
L

R
L o a d

I  ( t )S I  ( t )

V     =  0r e f

L

R
cS

Figure 23: A second-order electrical system.

Solution: From the linear graph in Figure 23 the state variables are the voltage across
the capacitor vC(t), and the current in the inductor iL(t). The state equations for the
system are: [

v̇C

i̇L

]
=

[
0 −1/C

1/L −R/L

] [
vC

iL

]
+

[
1/C
0

]
Is. (i)

The differential equation relating the current iL to the source current Is is found by
Cramer’s rule:

det

[
S 1/C

−1/L S + R/L

]
{iL} = det

[
S 1/C

−1/L 0

]
{Is} (ii)

or
d2iL
dt2

+
R

L

diL
dt

+
1

LC
iL =

1
LC

Is, (iii)

and the undamped natural frequency ωn and damping ratio ζ are:

ωn =
1√
LC

= 106 rad/s (iv)

ζ =
(R/L)
2/
√

LC
=

R

2

√
C

L
= 0.25. (v)

The system is underdamped (ζ < 1) and oscillations are expected in the response.
The differential equation is similar to the standard form and therefore has a unit step
response in the form of Eq. (2.2.2):

iL(t) =
(
ω2

n

) 1
ω2

n

[
1− e−ζωnt

√
1− ζ2

cos(ωdt− ψ)

]
(vi)

= 1− 1.033e−0.25×106t cos
(
0.968× 106t− .2527

)
(vii)
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which is plotted in Fig. 24. The step response shows that the peak current is 1.5 amp,
which is approximately 50% above the steady-state current.
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Figure 24: Response of the inductor current iL(t) to a 1 amp step in the input current Is.

2.2.3 Impulse response of a Second-Order System

The derivative property of linear systems allows the impulse response yδ(t) of any linear system to
be found by differentiating the step response ys(t)

yδ(t) =
dys

dt
because δ(t) =

d

dt
us(t) (86)

where us(t) is the unit step function. For the standard system defined in Eq. (70) with f(t) = δ(t),
the differential equation is

d2yδ

dt2
+ 2ζωn

dyδ

dt
+ ω2

nyδ = δ(t). (87)

When the roots of the characteristic equation λ1 and λ2 are distinct, the impulse response is found
by differentiating Eq. (80):

yδ(t) =
1
ω2

n

d

dt

[
1−

(
λ2

λ2 − λ1
eλ1t +

λ1

λ1 − λ2
eλ2t

)]
(88)

=
1
ω2

n

λ1λ2

λ1 − λ2

(
eλ1t − eλ2t

)

=
1

λ1 − λ2

(
eλ1t − eλ2t

)
. (89)

since ω2
n = λ1λ2. For the case of real and distinct roots, (ζ > 1), λ1 = −ζωn +

√
ζ2 − 1ωn and

λ2 = −ζωn −
√

ζ2 − 1ωn, this reduces to

yδ(t) =
1

2ωn

√
ζ2 − 1

(
e(−ζ+

√
ζ2−1)ωnt − e(−ζ−

√
ζ2−1)ωnt

)
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=
1

2ωn

√
ζ2 − 1

(
e−t/τ1 − e−t/τ2

)
(90)

where τ1 = −1/λ1, and τ2 = −1/λ2.
For the case of complex conjugate roots, 0 < ζ < 1, Eq. (90) reduces to

yδ(t) =
ωne−ζωnt

√
1− ζ2

sin (ωdt) . (91)

For a critically damped system (ζ = 1), the impulse response may be found by differentiating Eq.
(84), giving:

yδ(t) = te−ωnt. (92)

Figure 25 shows typical impulse responses for an overdamped, critically damped, and under-
damped systems.
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Figure 25: Typical impulse responses for overdamped, critically damped and underdamped second-
order systems.

2.2.4 The Ramp Response of a Second-Order System:

The integral property of linear systems, allows the ramp response yr(t) to a forcing function f(t) = t
to be found by integrating the step response ys(t)

yr(t) =
∫ t

0
ys(t)dt because r(t) =

∫ t

0
us(t)dt (93)
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where us(t) is the unit step function. For the standard system defined in Eq. (70) with f(t) = t,
the forced differential equation is

d2yr

dt2
+ 2ζωn

dyr

dt
+ ω2

nyr = t. (94)

When the roots of the characteristic equation are distinct, the ramp response is found by integrating
Eq. (80), that is

yr(t) =
1
ω2

n

∫ t

0

[
1− λ1λ2

λ2 − λ1

(
1
λ1

eλ1t − 1
λ2

eλ2t
)]

dt

=
1
ω2

n

[
t− λ1λ2

λ2 − λ1

(
1
λ2

1

[
eλ1t − 1

]
− 1

λ2
2

[
eλ2t − 1

])]

=
1
ω2

n

[
t− λ1λ2

λ2 − λ1

(
1
λ2

1

eλ1t − 1
λ2

2

eλ2t
)
− λ1 + λ2

λ1λ2

]
(95)

For an overdamped system with real distinct roots, λ1 = −ζωn +
√

ζ2 − 1ωn and λ2 = −ζωn −√
ζ2 − 1ωn, the ramp response may be found from Eq. (95) directly, or by making the partial

substitutions for ζ and ωn:

yr(t) =
1
ω2

n

t− 1
2ωn

√
1− ζ2

(
τ2
1 e−t/τ1 − τ2

2 e−t/τ2
)
− 2ζ

ω3
n

. (96)

which consists a term that is itself a ramp, a pair of decaying exponential terms, and a constant
offset term. When the system is underdamped with complex conjugates roots, Eq. (95) may be
written:

yr(t) =
1
ω2

n

t +
e−ζωnt

ω3
n

(
2ζ cosωdt +

2ζ2 − 1√
1− ζ2

sinωdt

)
− 2ζ

ω3
n

(97)

which consists of a ramp function, a damped oscillatory term and a constant offset.
When the roots are real and equal (ζ = 1) the response is found by integrating Eq. (84):

yr(t) =
1
ω2

n

∫ t

0

[
1− e−ωnt − ωnte−ωnt

]
dt

=
1
ω2

n

[
t +

2
ωn

e−ωnt + te−ωnt − 2
ωn

]
(98)

2.2.5 Summary of Singularity Function Responses

The characteristic responses of a linear system to the ramp, step, and impulse functions are sum-
marized in Table 3.

2.3 Second-Order System Transient Response

The characteristic response defined in the previous section is the response to a forcing function f(t)
as defined in Eq. (69). The response of a system to an input u(t) may be determined directly by
superposition of characteristic responses. The complete differential equation

d2y

dt2
+ 2ζωn

dy

dt
+ ω2

ny = q2
d2u

dt2
+ q1

du

dt
+ q0u (99)

in general involves a summation of derivatives of the input. The principle of superposition allows
us to determine the system response to each component of the forcing function and to sum the
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Damping ratio Input f(t) Characteristic Response y(t)

0 ≤ ζ < 1 f(t) = ur(t) yr(t) =
1
ω2

n

[
t +

e−ζωnt

ωn

(
2ζ cosωdt +

2ζ2 − 1√
1− ζ2

sinωdt

)
− 2ζ

ωn

]

f(t) = us(t) ys(t) =
1
ω2

n

[
1− e−ζωnt

√
1− ζ2

cos(ωdt− ψ)

]

f(t) = δ(t) yδ(t) =
e−ζωnt

ωn

√
1− ζ2

sin (ωdt)

ζ = 1 f(t) = ur(t) yr(t) =
1
ω2

n

[
t +

2
ωn

e−ωnt + te−ωnt − 2
ωn

]

f(t) = us(t) ys(t) =
1
ω2

n

[
1− e−ωnt − ωnte−ωnt

]

f(t) = δ(t) yδ(t) = te−ωnt

ζ > 1 f(t) = ur(t) yr(t) =
1
ω2

n

[
t +

ωn

2
√

1− ζ2

(
τ2
1 e−t/τ1 − τ2

2 e−t/τ2
)
− 2ζ

ωn

]

f(t) = us(t) ys(t) =
1
ω2

n

[
1− ωn

2
√

ζ2 − 1

(
τ1e

−t/τ1 − τ2e
−t/τ2

)]

f(t) = δ(t) yδ(t) =
1

2ωn

√
ζ2 − 1

(
e−t/τ1 − e−t/τ2

)

Notes:

1. The damped natural frequency ωd =
√

1− ζ2ωn for 0 ≤ ζ < 1.

2. The phase angle ψ = tan−1
(
ζ/

√
1− ζ2

)
for 0 ≤ ζ < 1.

3. For over-damped systems (ζ > 1) the time constants are
τ1 = 1/

(
ζωn −

√
ζ2 − 1ωn

)
, and τ2 = 1/

(
ζωn +

√
ζ2 − 1ωn

)
.

Table 3: Summary of the characteristic transient responses of the system ÿ + 2ζωnẏ + ω2
ny = f(t)

to the unit ramp ur(t), the unit step us(t), and the impulse δ(t).
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individual responses. In addition, the derivative property tells us that if the response to a forcing
function f(t) = u(t) is yu(t), the other components are derivatives of yu(t) and the total response
is

y(t) = q2
d2yu

dt2
+ q1

dyu

dt
+ q0yu. (100)

As in the case of first order systems, the derivatives must take into account discontinuities at time
t = 0.

Example 11

Determine the response of a physical system with differential equation

d2y

dt2
+ 8

dy

dt
+ 16y = 3

du

dt
+ 2u

to a step input u(t) = 2 for t ≥ 0.

Solution: The characteristic equation is

λ2 + 10λ + 16 = 0 (i)

which has roots λ1 = −2 and λ2 = −8. For this system ωn = 4 rad/s and ζ = 1.25; the
system is overdamped. The characteristic response to a unit step is (from Table 3):

ys(t) =
1
ω2

n

[
1− ωn

2
√

ζ2 − 1

(
τ1e

−t/τ1 − τ2e
−t/τ2

)]
(ii)

where τ1 = 1/2, and τ2 = 1/8, or

ys(t) =
1
16

[
1− 8

3

(
1
2
e−2t − 1

8
e−8t

)]

=
1
16
− 1

12
e−2t +

1
48

e−8t (iii)

The system response to a step of magnitude 2 is therefore

y(t) = 2
[
3
dys

dt
+ 2ys

]

= 2
[
3

(
1
6
e−2t − 1

6
e−8t

)
+ 2

(
1
16
− 1

12
e−2t +

1
48

e−8t
)]

=
1
4
− 2

3
e−2t +

11
12

e−8t (iv)

For systems in which q2 6= 0 a further simplification is possible. The system differential equation
may be written in operational form

y(t) =
q2S

2 + q1S + q0

S2 + 2ζωnS + ω2
n

{u} (101)
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and rearranged as

y(t) = q2 {u}+
(q1 − 2b2ζωn) S +

(
q0 − b2ω

2
n

)

S2 + 2ζωnS + ω2
n

{u} (102)

The response is then found from the characteristic response and the input

y(t) = q2u(t) + (q1 − 2b2ζωn)
dyc

dt
+

(
q0 − b2ω

2
n

)
yc(t). (103)

Example 12

Find the response of a physical system with the differential equation

d2y

dt2
+ 8

dy

dt
+ 4y =

d2u

dt2
+ 2

du

dt
+ u

to a step input u(t) = 2 for t ≥ 0.

Solution: The characteristic equation is

λ2 + 4λ + 4 = 0 (i)

which has a pair of coincident roots λ1 = λ2 = −2. The system is critically damped
with ωn = 2 rad/s. The characteristic impulse response is (from Table 3):

yδ(t) = te−ωnt = te−2t. (ii)

Because q2 6= 0 we may write the system response as

y(t) = q2δ(t) + (q1 − 2b2ζωn)
dyδ

dt
+

(
q0 − b2ω

2
n

)
yδ(t)

= δ(t)− 4
dyδ

dt
− 2yδ

= δ(t)− te−2t − 2e−2t (iii)

Example 13

An electric motor is used to drive a large diameter fan through a coupling as shown in
Fig. 26. The motor is not an ideal source, but exhibits a torque-speed characteristic
that allows it to be modeled as a Thevenin equivalent source with an ideal angular
velocity source Ωs(t) = Ω0 in series with a hypothetical rotary damper Bm. The motor
is coupled to the fan through a flexible coupling with torsional stiffness Kr, and the fan
impeller is modeled as an inertia J with the bearing and impeller aerodynamic loads
modeled as an equivalent rotary damper Br.

The response of the fan speed when the motor is energized is of particular interest since
if the fan speed exceeds the design speed, the impeller can experience excessive stresses
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Figure 26: Electric motor fan drive system.

due to centrifugal forces. It is desired to select the system components so that the fan
impeller reaches its operating speed with no overshoot. The torque in the coupling
Kr during the start-up transient is also of interest because excessive torque could lead
to failure. The motor specifications indicate that Ω0 = 100 rad/s, and Bm = 1.0
N-m-s/rad. The inertia of the fan impeller is J = 1.0 Kg-m2 and the net drag of the
bearings and aerodynamic load is Br = 1.0 N-m-s/rad. The coupling stiffness to achieve
an impeller response with no overshoot is to be determined, and the response of the
system state variables is to be determined.

Solution: The state equations for the system may be expressed in term of the two
state variables ΩJ , the fan impeller angular velocity, and TK , the torque in the flexible
coupling, [

Ω̇J
˙TK

]
=

[
−Br/J 1/J
−Kr −Kr/Bm

] [
ΩJ

TK

]
+

[
0

Kr

]
Ωs. (i)

The system characteristic equation is

det [λI−A] = λ2 +
(

Br

J
+

Kr

Bm

)
λ +

Kr

J

(
1 +

Br

Bm

)
= 0, (ii)

and the undamped natural frequency and damping ratio are

ωn =

√
Kr

J

(
1 +

Br

Bm

)
(iii)

ζ =
1

2ωn

(
Br

J
+

Kr

Bm

)
. (iv)

Notice that for this system the values of the two damping coefficients influence both
the natural frequency and the damping ratio.

1. The differential equation describing the fan speed is

d2y1

dt2
+ 2ζωn

dy1

dt
+ ω2

ny1 =
Kr

J
Ωs (v)

with a constant input Ωs(t) = Ω0. For no overshoot in the step response on starting
the motor the system must be at least critically damped (ζ ≥ 1). Using Eqs. (ii)
and (iii), the value of Kr required for critical damping may be found by setting
ζ = 1 in Eq. (iv), giving

2

√
Kr

J

(
1 +

Br

Bm

)
=

(
Br

J
+

Kr

Bm

)
, (vi)
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and with the system parameter values this equation gives

Kr = 5.83 N/m. (vii)

With this value of Kr the system parameters are ζ = 1 and ωn = 3.41 rad/s. From
Table 3 the unit characteristic step response is

ys(t) =
1
ω2

n

[
1− e−ωnt − ωnte−ωnt

]
(viii)

and the impeller response to a step of 100 rad/s is

ΩJ(t) =
100q0

ω2
n

[
1− e−ωnt − ωnte−ωnt

]

= 50
[
1− e−3.41t − 3.41te−ωnt

]
. (ix)

The response in fan speed is similar to the non-dimensional form shown in Fig. 22,
and is plotted in Fig 27. Note that the steady-state speed is 50 rad/s, which is one
half of the motor no-load speed of 100 rad/s.

2. The differential equation relating the torque TK to the source velocity is

d2TK

dt2
+ 2ζωn

dTK

dt
+ ω2

nTK = Kr
dΩs

dt
+

KrBr

J
Ωs (x)

which contains both the input Ωs and its derivative. Then

TK(t) = 100
[
Krte

−ωnt +
KrBr

ω2
nJ

(
1− e−ωnt − ωnte−ωnt

)]

= 50
(
1− e−3.41t + 8.22te−3.41t

)
N-m, (xi)

which is plotted in Fig. 27. Notice that in this case, although the system is
critically damped (ζ = 1), the response overshoots the steady-state value. This
behavior is common for output variables that involve the derivative of the input
in their differential equation.
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Figure 27: Step response of shaft coupling torque TK , and fan angular velocity ΩJ .

41


