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Integration of Representation Into 
Goal-Driven Behavior-Based Robots 

Maja J. 

Abstract-We describe an implemented architecture that inte- 
grates a map representation into a reactive, subsumption-based 
mobile robot. As an alternative to hybrid methods, which separate 
the reactive and traditional planning parts of the control system, 
we present a fully integrated reactive system that removes the 
distinction between the control program and the map. Our 
method was implemented and tested on a mobile robot equipped 
with a ring of sonars and a compass, and programmed with a 
collection of simple, incrementally designed behaviors. The robot 
performs collision-free navigation, dynamic landmark detection, 
map construction and maintenance, and path planning. Given 
any known landmark as a goal, the robot plans and executes the 
shortest known path to it. If the goal is not reachable, the robot 
detects failure, updates the map, and finds an alternate route. 
The topological representation primitives are designed to suit the 
robot’s sensors and its navigation behavior, thus minimizing the 
amount of stored information. Distributed over a collection of 
behaviors, the map itself performs constant-time localization and 
linear-time path planning. The approach we present is qualitative 
and tolerant of sensor inaccuracies, unexpected obstacles, and 
course changes. It extends the repertoire of integrated reactive 
systems to tasks requiring spatial modeling and user interaction. 

I. INTRODUCTION 
NACCURATE sensors, world unpredictability, and imper- I fect control often cause the failure of traditional planning 

and navigation methods for real-time mobile robots. More 
reactive approaches to navigation have been explored in [l], 
[5], and [33]. In particular, [5] proposed the subsumption 
architecture as an incremental method for building layers of 
robot competencies, consisting of simple rules that tightly 
couple sensing and action. 

The subsumption architecture has been used successfully in 
fully reactive systems such as [4], [7 ] ,  [9], and [15]. So far, 
these systems have been limited to applications requiring no 
explicit internal representation, which imposed a fundamental 
limitation on the domain of applications for the architecture. 
The classical problem of path planning, for example, requires 
some representation of space. Any solution superior to random 
walk necessitates an internal model of the robot’s current lo- 
cation, the desired goal location, and the relationship between 
the two. 

Path planning is discussed extensively in the literature 
[21], [23], [34]. Most solutions rely on centralized world 
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models whose compatibility with completely reactive systems 
is debatable [3].  Hybrid systems offer a compromise by 
employing a reactive system for low-level control and a 
planner for higher level decision making. They separate the 
control system into two or more communicating but basically 
independent parts. 

In contrast, we address the problem of integrating represen- 
tation into a fully reactive, nonhybrid system with the goal 
of maintaining a map of the environment and using it for 
path planning. We introduce a distributed map representation 
that merges directly into a homogeneous subsumption-based 
system, thus eliminating the need to separate the planning 
and execution parts of the system. Our approach extends the 
repertoire of integrated, fully reactive systems to domains 
requiring internal spatial representation. 

Our system’s task is to explore an office environment, and to 
construct and maintain a map based on landmarks it discovers. 
The user can select a particular landmark (e.g., a specific 
corridor) or landmark type (e.g., the nearest corridor) as the 
goal. The robot then employs the map to plan and execute 
the shortest known path to that landmark. After reaching the 
destination, the robot is either given another goal or continues 
to explore and update its map. If the robot fails to reach the 
goal, it detects its failure and changes the map appropriately. 

All algorithms we describe were implemented on a mobile 
robot. The data were gathered by running the robot in unal- 
tered office environments with static and dynamic obstacles 
including furniture, other robots, and people. 

11. THE ROBOT, TOTO 

Toto, the testbed robot we constructed, consists of a circular 
omnidirectional three-wheeled base capable of following an 
arbitrary continuous path. On the base is mounted a ring 
of 12 ultrasonic ranging sensors, ranging from 0.9 to 32 ft, 
and a flux-gate compass, providing 4 bits of bearing (Fig. 1). 
The robot is programmed in the Behavior Language, a rule- 
based parallel programming language that compiles into the 
subsumption architecture [5] .  

The robot was tested over a period of two months in over 40 
trials in a cluttered office environment. The data were gathered 
by attaching a marker to the base of the robot and recording 
its path on the floor covered with 1-ft2 tiles. 

111. SENSOR CHARACTERIZATION 

Real sensors are noisy and inaccurate. Maximizing their 
reliability often involves data interpretation using compli- 
cated physical models. In contrast to explicit error modeling, 
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Fig. 2. The organization of the compass and sonar regions. The sonar cones 
remain constant relative to the shown forward-pointing vector. The compass 
reflects the local magnetic field. The two sensors are used independently. 
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Fig. 3.  The perceptual zones around the robot corresponding to the relevant . .  . I  

Fig, 1, The robot testbed: an omnidirectional three-wheeled base equipped 
obstacle and boundary conditions in the environment. The regions are used 
to implement basic collision-free navigation rules that combine into a robust 
boundary tracing behavior. with a ring of 12 ultrasonic ranging sensors and a flux-gate compass. 

we minimized overhead computation by using qualitative, 
functional descriptions of the sensors describing merely the 
properties relevant to the robot's task. 

Much work has been done on formalizing the limitations 
of ultrasonic ranging sensors and suggesting various analytical 
approaches to their application [19], [20]. Our method relies on 
a single sufficient characteristic of the sensor: its high accuracy 
(near 95%) for incident angles less than 1.5" from the surface 
normal [32]. Long returns may result from specular reflection, 
and are thus less reliable. We utilize the returns in the short 
range, as well as the qualitative properties of the data, such 
as relative differences between readings rather than their exact 
values. 

The error characteristics of the compass are quite different. 
Its absolute heading reading is grossly inaccurate in the 
presence of interfering magnetic fields and metal structures in 
the environment (up to 2 of the available 4 bits of resolution, 
or SO%), while it is locally consistent to up to 90% accuracy. 
To maximize its utility, we structured our algorithms to rely 
on the repeatability rather than on the absolute accuracy of 
the sensed compass direction. 

Fig. 2 illustrates the organization of the sonar and compass 
regions on the robot. The sonar cones remain constant with 
respect to the forward-pointing vector, whereas the compass 
reflects the local magnetic field. The two sensors are used 
independently. 

IV. THE BASIC NAVIGATION ALGORITHM 

The robot's control system consists of three competencies 
integrated into a homogeneous behavior-based representation: 
1) basic navigation (obstacle avoidance and boundary tracing), 
2) landmark detection, and 3) map-related computation (map 
construction, map update, and path planning). The competen- 

cies were designed and added incrementally, each relying on 
those below. 

Lower level competencies do not depend on the higher level 
ones, but we designed them by keeping in mind the entire in- 
tegrated system. The basic navigation algorithm was designed 
to facilitate landmark recognition as well as map construction 
[27]. Its primary task was to keep the robot moving safely 
through an unaltered office environment, avoiding collisions 
with objects and people. The rules for reactive wandering were 
augmented with a rule that made the robot maintain a small 
distance from objects, i.e., avoid open areas. This behavior 
is useful as the accuracy of the sonars is maximized in the 
proximity of detectable objects, which is where the robot can 
obtain the most information about the environment. 

The robot's velocity was limited by the sonar refresh rate: 
200 ms per pair of sensors; a new data set for the entire sonar 
ring was obtained at 0.83 Hz. This limited the robot's velocity 
from the maximum of 2 to 0.2 m/s. Based on the circular 
arrangement of the sonars, obstacle avoidance and boundary 
tracing were implemented by segmenting the space around the 
robot into relevant sensory regions (see Fig. 3). The area in 
front of the robot was divided into two regions: the danger 
zone and the safe zone. The threshold between the zones (0.3 
m) was derived from the robot's velocity and the minimum 
range of the sonar sensors (0.25 m). It guarantees that at least 
two sets of sonar data are available before reaching an obstacle, 
thus decreasing the probability of collision. 

An object in the danger zone is an obstacle. An object in 
the safe zone causes the robot to turn appropriately to avoid it. 
The edging distance is a threshold dividing the area on each 
side of the robot. The robot stays within the edging distance 
of the boundary it is following. The following basic behaviors 
utilize the zones to produce boundary tracing: 
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(defbehavior stroll 
(cond 

((and ( <  = (min (sonars 1 2 3 4 )  
danger-zone)) 

(not stopped)) 
(stop) 1 

((and (< = (min (sonars 1 2 3 4 )  
danger-zone)) 

(stopped)) 
(move backward)) 

(move forward)))) 
(t 

Stroll: If an obstacle is detected within the danger zone, the 
robot stops. If stopped within a danger zone, it backs up. This 
allows the robot to escape tight situations while minimizing 
unnecessary motion in avoiding transient obstacles. If no 
obstacles are detected, the robot is repeatedly given a target 
distance, resulting in smooth continuous motion. Stroll alone 
provides safe forward motion. 
(defbehavior avoid 

(cond 
((and (<  = (sonar 1 or 2) safe- 

( <  = (sonar 3 or 4) safe- 
zone ) 

zone ) ) 
(turn left)) 

(turn right)))) 
( ( <  = (sonar 3 or 4) safe-zone) 

Avoid: The robot turns (by a small, fixed angle (Y  = 30' = 
width of sonar cone) in the opposite direction from an obstacle 
within the safe distance of its front sonars. If obstacles are 
detected on both sides, oscillation is prevented by consistently 
choosing the same default direction (left). In conjunction with 
stroll, this rule generates collision-free wandering behavior. 
(defbehavior align 

(cond 
((and ( <  (sonar 7 or 8) edging- 

( >  (sonar 5 or 6) edging- 
distance ) 

distance)) 
(turn right)) 

((and ( <  (sonar 9 or 10) edging- 

( >  (sonar 11 or 0) edging- 
distance ) 

distance)) 
(turn left)))) 

Align: If an object is detected within the edging distance 
range of one of the rear-lateral sonars (10 and 9 or 8 and 7) 
and not by the lateral sonars (0 and 11 or 5 and 6) on the 
same side, the robot makes an (YO turn in that direction. The 
combination of avoid, stroll, and align allows the robot to 
follow straight and convex curved boundaries. 
(defbehavior correct 

1 Correct - - 
Align 

Genera l  Boundary t F o l l o w i n g  

Ft-, convex F o l l o w i n g  Boundary 

C o l  1 i s i on -F ree  EY- S t r o l l  Wander ing  

Col  I i s i o n - F r e e  
Fo rwa-d  M o t i o n  

Fig. 4. A schematic showing the incremental interaction of the low-level 
navigation behaviors resulting in boundary tracing. The addition of each new 
behavior adds to the overall competence of the robot. 

distance)) 
(turn left)) 

((and ( <  (sonar 6) edging-distance) 
( >  (sonar 5) edging- 
distance)) 

Correct: This behavior prevents the robot from losing track 
of a lateral boundary containing a sharp turn by monitoring 
the pair of sonars on each side of the robot (0 and 11 or 
5 and 6). If the rear of the two sonars (11 or 6) detects an 
object within the edging distance and the front (0 or 5 )  does 
not, the robot makes an ( Y O  turn in the same direction. By 
turning, it gets the boundary in the range of both of the sensors 
in the pair, effectively returning to a position aligned with 
the boundary. In conjunction with the rest of the wandering 
behaviors, correct allows the robot to track arbitrarily sharp 
turns. Fig. 4 illustrates the incremental addition of navigational 
competencies resulting in boundary tracing behavior. 

The boundary-following behavior does not distinguish be- 
tween, or differentially treat, various kinds of boundaries in 
the environment. The behavior is general, independent of what 
types of objects and structures form the boundaries, as long 
as they are detectable by the sonars. 

Fig. 5 shows a cumulative plot of four real-time runs in a 
large, unaltered office area. The room is cluttered with chairs, 
tables, doors, a water fountain, moving people, and other 
robots. The data show reliable boundary following in all trials, 
independent of the robot's starting position. Fig. 6 plots five 
independent real-time runs showing the robot's convergence 
to the middle of a cluttered corridor. The robot remains in the 
middle of the empty corridor because the corridor width is 
less than the sum of the edging distance on both sides of the 
robot. In a wider corridor, the robot follows the wall it initially 
approaches. Even without the use of position control to direct 
the robot to specific Cartesian positions, the navigation rules 
result in stable paths that show repeatable convergence around 
the detected object boundaries. 

V. LANDMARK DETECTION 
(cond The robust, repeatable navigation behavior enabled the robot 

((and ( <  (sonar 11) edging- to safely wander about and explore its environment. Next we 
added the ability to detect landmarks used in spatial map- 

( >  (sonar 0 )  edging- ping. Sonar-based systems usually perform landmark detection 
distance) 
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Fig. 5. A plot of four independent real robot runs manifesting consistent 
boundary following in an unaltered room. The data consist of inflection points 
in the robot’s actual traversed paths, connected by straight line segments. 

Fig. 6. A plot of five independent real robot runs showing convergence to 
the middle of a somewhat cluttered corridor. The corridor is shown in three 
parts, hut the data demonstrate continuous runs left to right, bottom to top. 

by matching sensory patterns to stored landmark models or 
signatures (e.g., [12]). These approaches are “static” in their 
use of a discrete snapshot of the world based on a single 
set of sensor data. However, the expected accuracy of any 
one data point is low, and different sonar signatures are 
generated in different trials due to sensor error and noise. 
Static matchers compensate by maintaining error estimates and 
utilizing positional precision that is often difficult to maintain 
due to wheel slipping and other factors producing further 
cumulative errors. 

We explored an alternative, “dynamic,” approach to land- 
mark detection based on continuously monitoring the robot’s 
sensors and taking advantage of the robot’s underlying bound- 
ary tracing behavior. The landmark detector looks for features 
in the world that have physical extensions detectable over time, 
i.e., it monitors for consistencies in the sensory data as the 
robot is moving next to objects in the environment. Spurious 
sensor errors are filtered out through dynamic averaging. 
Three specific sensory conditions are monitored: the compass 

bearing, to determine whether the robot is moving straight, 
and the sonar data on both sides of the robot, to check for 
a persisting boundary on either or both sides. Whenever the 
robot repeatedly detects short readings on its right side and 
its averaged compass bearing is stable, the confidence counter 
for a right wall is incremented. An analogous rule applies to 
left walls. Simultaneous sufficient confidence in both walls 
indicates a corridor. When the appropriate combination of 
confidences reaches a preset threshold 7, the corresponding 
landmark is detected, and the confidence counter is reset. r 
is the minimum length of a continuous landmark boundary, 
represented in counter units. To adapt the algorithm to other 
types of environments, T is set to the shortest landmark we 
want the robot to detect. In our case, based on the constant 
velocity assumption, T is equivalent to the maximum length of 
nonlandmark obstacles in the office environment (chairs, table 
legs, trash cans, filing cabinets). 

We chose three large, stable, and reliably detectable land- 
mark types: left walls (LW), right walls (RW), and corridors 
(C). A default landmark type was added, corresponding to long 
irregular boundaries (I). It enables the system to represent the 
environment as a collection of contiguous strings of features 
describing the path the robot traversed. Wherever in the 
environment the robot happens to be, it finds and follows a 
boundary enabling it  to classify the area into one of its four 
landmark types. 

The landmarks used by the system are designed to be 
reliably detectable, but due to their size produce a rather sparse 
representation of space. By introducing additional sensors or 
position control, the granularity of landmarks can be refined. 
While additional behaviors would be required for detecting 
different landmark types, the connectivity and path planning 
properties of the representation would remain linear. 

The qualitative, procedural nature of the landmark detection 
algorithm adds robustness to the system by not relying on 
sensor precision or position control. Fig. 7 illustrates the 
locations of landmark detection over three trials in a room 
cluttered with furniture and people. Even without position 
control, the data show some clustering. The same landmarks, 
with slight deviations in the compass bearing due to the 
averaging process, are detected repeatedly independent of the 
robot’s starting position or the exact path followed. 

Besides following object boundaries, the robot must also be 
able to find landmarks located in the middle of open areas, 
separated from the continuous boundary it begins to explore. 
This ability is provided by a behavior that occasionally moves 
the robot out into an open area. When stimulated to go 
into an open area, the robot continues to move straight until 
i t  encounters an object whose boundary is either new or 
recognized as one it has followed before. The following 
sections describe how the mapping algorithm distinguishes 
between the two possibilities and how the open-space behavior 
is triggered. 

VI. THE MAPPING ALGORITHM 

The robot’s top-level task is to map the structure of the 
environment based on the spatial relationships of the land- 
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Fig. 7. The robot’s landmark detection performance over three trials in the 
same room. Transient obstacles and people are not shown. Each landmark 
consists of the type and the associated compass bearing (e.g., RWO = right 
wall north). The shown landmark locations correspond to the exact position 
of detection. The subscript indicates the trial. The locations corresponding to 
the same landmark are indicated by a common shaded area. 

marks and to use this map to find paths to any previously 
visited landmark that the user chooses as the goal. This differs 
fundamentally from building a detailed map of the world that 
includes features of smaller size and higher probability of 
impermanence. The aim is to produce and maintain a coarse- 
scale map that allows the robot to get within the sensing range 
of the goal. Reaching an exact location can be accomplished by 
augmenting the system with special-purpose motion planning 
based on the specific task and sensors used. The system is 
suitable for various applications that require the use of a map, 
such as sentry and surveillance tasks, as well as prioritized 
tasks, such as hazardous area maintenance, plant watering, or 
supply delivery in a large office complex. 

Reaching places that cannot be sensed from the robot’s cur- 
rent position necessitates some form of path planning, which, 
in turn, requires a world model. The traditional approach to 
path planning involves some type of a reasoning engine that 
generates a plan by manipulating a Cartesian map usually 
stored in a centralized data structure (e.g., [8], [14], [16], [21], 
etc.). The success of the plan depends on the accuracy of the 
geometric information in the map. In contrast to Cartesian 
metric representations, graphs are convenient for encoding 
topological, qualitative information (e.g., [8], [lo], [ 171, [18], 
etc.). Similarly, our approach directly constructs and utilizes a 
graph in which each node represents a unique landmark, and 
neighbor links indicate physical adjacency, thus producing a 
structure isomorphic to the topology of the environment. 

A. The Distributed Nature of the Representation 

In contrast to implementing the graph as a manipulable data 
structure, we represent it as a collection of concurrently active 
behaviors in which each landmark is a behavior. The links 
in the graph serve a dual purpose: they encode topological 

Fig. 8. The graph representation consists of a number of concurrently active 
nodes, each of which corresponds to a unique landmark in the world. Each 
node receives inputs from the compass and the landmark detector, and 
communicates with its neighbors in the graph. 

relationships between landmarks and serve as message wires 
allowing information exchange between neighbors. Each land- 
mark behavior receives inputs from the landmark detector and 
the compass, and outputs to other behaviors in the network 
(Fig. 8). 

Unlike a centralized data structure, the graph as a whole is 
not manipulable since each of its nodes is an independently 
acting behavior. Its distributed representation is a natural 
extension of the subsumption architecture. Like all other 
behaviors in the system, graph behaviors are collections of 
simple rules. The rules in the landmark behaviors allow 
the nodes to match the detected landmarks to the particular 
landmark they are encoding (i.e., to localize the system) and 
to send various activation messages used for path planning. 

B. Map-Building Through Graph Construction 

As the robot explores the environment, the landmarks it 
detects are broadcast to all the nodes in the graph. Initially, 
the nodes are empty, and the first landmark is assigned to the 
first node by recording its descriptor. The landmark descriptor 
is a tuple < T.C.L .P >: 

T E {LW.  RW. C. I }  is the qualitative landmark type. 
C E [0..15] is the averaged compass bearing. 
L E [1..127] is a rough estimate of the landmark’s length. 
P = (.c,y) s.t. -128 5 r . y  5 127 is a coarse position 

estimate. 
L is derived from the number of times the same landmark 

is consecutively detected. Assuming constant velocity, this 
value serves as an implicit representation of distance and time. 
P is derived by periodically summing the compass vector, 
the magnitude of which is based on the constant velocity 
assumption. Once created, the newly added node is activated. 
The active node corresponds to the position of the robot within 
the map. 

Whenever a landmark is detected, i t  is matched to all the 
nodes in the graph. The matching process results with either 
a unique match or no match (see next section for details). 
Localization is a simple process of comparing the landmark 
descriptor < t .  c. 1. ( T >  71) > with the robot’s current sensory 
information < t’. c’. I ’ .  ( x ’~  y’) >. For the landmark type, 
an equality test suffices ( t  =? t’), whereas the compass 
and position values are compared with an allowable error 
margin ( 1  c - c’ 15 30 degrees). The relatively large compass 
error could be used based on the heuristic that physically 

RI  
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adjacent landmarks (walls and corridors) in a typical office 
environment are usually orthogonal or collinear. The rough 
position estimate was recalibrated whenever the robot returned 
to a previously visited landmark and was scaled by an error 
factor e directly proportional to the size I of the landmark. e 
allows for the possibility that the robot is positioned anywhere 
along the length of a landmark and takes advantage of the fact 
that large landmarks permit large error. For an n-unit-long 
corridor, e covers the area of the rectangle of length n, the 
height h of an average corridor, and rotated in the direction 
c. Formally: 

I (x - d )  COSC + (y  - y’) s inc  I< n/2 

I -(z - 2’) sin c + (y - y’) cos c I <  h/2. 

Finally, each landmark has a dual, depending on the di- 
rection of the robot’s motion relative to the boundary being 
followed (e.g., a left wall going north is equivalent to a right 
wall going south, LWO = RW8). Based on the landmark 
descriptor, landmark matching, performed in parallel, runs in 
0(1) constant time regardless of the size of the graph. 

C. Landmark Disambiguation 

Whenever a node is activated, it spreads expectation to its 
neighbor in the direction of robot’s travel along the path, 
priming it for upcoming activation. Matching an expecting 
node to a found landmark verifies the correctness of the 
graph. The notion of expectation provides a contextual clue 
by expanding the matching window to two nodes instead of 
one. This information helps disambiguate between nodes with 
identical type and similar compass bearing. 

When the robot initially returns to a previously visited 
landmark, the node corresponding to the location will not be 
expecting activation since the topological link between it and 
the beginning of the path has not yet been established. The 
match is recognized by comparing the location of the landmark 
to the stored position estimate. Although the estimate is very 
inaccurate, the matching tolerance is bounded by the size of 
the landmark, and it suffices for disambiguating two otherwise 
identical landmarks. The use of the position estimate does not 
constitute position control, however, since it is used exclu- 
sively for landmark disambiguation and not for controlling the 
robot’s motion. The combination of expectation and position 
estimation allows for uniquely disambiguating the landmarks. 

Consequently, matching always produces a unique match 
or no match. If no match is found, the landmark is assumed 
to be new and is assigned to a free node. The newly added 
landmark is connected to the currently active landmark by a 
topological wire. Fig. 9 shows the graph representation the 
robot constructed for the office environment shown in Fig. 7. 
Fig. 10 illustrates an environment containing multiple cycles 
and its corresponding graph. 

The unique representation of landmarks eliminated false 
positive matches in all trials. Due to sensor noise, false 
negatives occurred in approximately one third of the trials 
when the robot, while following a boundary, failed to recog- 
nize it as a landmark. If this happened during the discovery 

Fig. 9. The graph the robot produced in the environment shown in Fig. 
7 in the second trial. The first trial produced (RWO, RWl1, RW7, RW4) 
while the third trial produced (RWO, RW12, RW8, RW3); the three networks 
have correct, identical topology, and the difference in compass values falls 
within c’s error margin. The nodes are ordered left to right by discovery time. 
Besides the landmark type and compass bearing, the figure also shows the 
relative landmark length. 

L W 4  1 LWO 

I c 4  

L W 8  

s ta r t  c12 

Fig. 10. An example of an environment containing multiple cycles on the 
robot’s traversal path, and the graph the robot produced. 

phase, it resulted in a sparser map that would later get 
augmented if the robot was allowed repeated runs through 
the same environment. In the converse case, failing to detect a 
previously detected landmark was ignored if the subsequent 
landmark matched in type and position. Otherwise it was 
recognized as a new location and added to the network as 
an alternative direction to pursue. This case accounted for 
situations in which the environment could change, such as 
a doorway that could be open or closed. Finally, failing to 
detect a landmark while on the way to a goal did not affect 
the goal-finding behavior unless the skipped landmark was the 
goal itself or a junction of two or more paths in the network. 

D. Path Planning and Optimization 

The map provides the structure for relating the robot’s 
current position and the goal. Its distributed nature allows for 
the path to be computed by the individual map components 
using local operations only. We use a variation of activation 
spreading from the goal in all directions throughout the graph. 
Activation is propagated through the nearest-neighbor links. 
The goal node repeatedly sends out a calZ that eventually 
reaches the currently active node. Equivalent to parallel search, 
this process is guaranteed to terminate in worst case linear time 
0(n) in the size of the graph [26]. 
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Path optimization by topological distance is a natural con- 
sequence of this process. Whenever the robot follows the 
landmarks in the direction of the spreading call, it is guaranteed 
to proceed on a shortest topological path to the goal. The 
call originating from the node closest to the robot’s current 
position will reach it first, given uniform activation dissipation. 
Weighting each landmark by its physical length allows for 
computing the physically shortest path within the graph. As a 
call propagates from the goal to the current node, it sums 
the lengths of all the landmarks it passes. Upon reaching 
the active landmark, the value of the call approximates the 
physical length of the traversed path. The shortest incoming 
call is chosen at each landmark. Making a local greedy choice 
at each node results in the global, physically shortest known 
path within the graph, in O ( n )  [28]. 

Graph cycles do not cause problems because of the greedy 
nature of the algorithm. Since the length of a cycling call 
increases monotonically, it is never selected as the optimal 
path. Additionally, the maximum length of any path is bounded 
by the size of the graph so indefinite activation propagation 
cannot happen. 

The activation from the goal node is received by all of 
the nodes in the graph. As the robot traverses a path, it 
chooses the optimal direction to pursue from any landmark. 
Consequently, if the robot veers away from the optimal path 
or is intentionally placed elsewhere in the environment by the 
user, once localized it will pursue the optimal path from the 
current location [25] .  

The goal is reached when the currently recognized landmark 
matches the goal landmark. This condition terminates the 
activation spreading, and the robot can pursue another goal 
or continue exploring the environment and augmenting and 
verifying the map. If the path to the goal is blocked, the robot 
will persistently fail to make a transition from the current 
landmark to its neighbor. After a fixed time period, it gives 
up pursuing the blocked path, terminates activation spreading, 
and removes the topological link between its current position 
and the one it failed to reach. When the change in the graph 
is complete, activation spreading from the goal is started 
up again, in order to find another path, if one exists. The 
ability to detect failure and update the network structure allows 
the system to adapt the map representation to a dynamically 
changing environment. 

In evaluating the performance of the system, the robot 
was presented with various obstacles including furniture and 
people walking in its way. If the desired path was temporarily 
blocked, the low-level navigation behavior ensured that no 
collision occurred by turning the robot away from the obstacle. 
Simultaneously, activation from the goal forced the robot to 
turn in the direction of the desired path. The conflict of the 
two motivations resulted in taking the first free turn toward 
the direction of the goal. Only if the path to the goal was 
completely blocked was it eventually abandoned. 

The user can interact with the system in a number ways 
depending on the type of the specified goal. The goal types 
vary from very specific (e.g., a particular corridor, the first 
discovered landmark in the graph, etc.) to less general (e.g., 
nearest north-going corridor) to very general (e.g., nearest 

tab le  goal 

I m  

Fig. 11. In the shown environment, the robot records a cluttered area as a 
long irregular boundary (indicated by landmark type I). 

e e 

goal 1 j 
topological length 4 

physical length: 8 

Fig. 12. The graph the robot constructed of the shown environment. Shaded 
nodes indicate the robot’s current location and the goal, and the arrows indicate 
the direction of activation propagation. To test the robot’s ability to use the 
correct measure of optimality, the corridor was chosen as the goal when the 
robot was located at LWX. The topologically shortest path involves going 
through a cluttered area with a long irregular boundary. Consequently, the 
robot consistently chose the topologically longer but physically shortest path 
around the room. 

corridor). All landmarks that match the goal descriptor become 
goals and spread activation. Based on the greedy algorithm, 
the robot always pursues the path to the nearest one. 

Fig. 11  shows an environment used for testing path finding 
and optimization. After exploring the environment and learn- 
ing its structure, the robot is given the corridor as the goal. 
Given a choice of paths from its current position (LW8), the 
system takes into account that the shortest topological path 
does not correspond to the shortest physical one (Fig. 12). 
In  seven consecutive trials, the system consistently correctly 
chose the topologically longer but physically shorter path to 
the goal. 

VII. HARDWARE IMPLICATIONS 

The system we present is best suited for coarse-grained 
parallel hardware. In general, graph structures with arbitrary, 
dynamically assignable connections between nodes can esca- 
late to full connectivity and do not scale well. In contrast, our 
approach employs only a few global broadcast connections 

I1 
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in addition to nearest-neighbor connections between adjacent 
graph nodes. 

To further limit the graph connectivity, we utilize some 
domain knowledge about the robot’s environment. Based on 
the boundary following behavior, the robot has no more than a 
small, fixed number f of directions to pursue from any given 
location in an office environment. Consequently, we can bound 
the out degree of the graph to f .  In our implementation, f = 8, 
bounded by the resolution of the compass in the half-plane 
(from any convex boundary the robot can pursue at most as 
many directions as it can distinguish with the compass). This 
results in the total connectivity linear o(n) in the size of the 
graph. 

The choice of a parsimonious representation that encodes 
only the necessary information simplified the control system 
and resulted in notably small object code. For example, a 
network of 10 landmarks takes up 51 kilobytes. The division 
between code and data is blurred since the graph represen- 
tation, which comprises most of the code, is actually data. 
This means that scaling to larger maps requires only a linear 
increase in hardware. This contrasts with approaches relying 
on a reasoner that may suffer from a combinatorial explosion 
with an increase in the problem size. 

The approach we present has been shown to be biologically 
feasible and to resemble some properties of the spatial map- 
ping mechanism of a rat [26]. In particular, the distributed 
nature of the representation and its direct integration with 
action has biological analogs [29]. 

VIII. RELATED WORK 

Path planning systems initially relied on purely deliber- 
ative, nonreactive solutions (e.g., [6], [8], [14], [16], [21], 
[30], etc.). More recently, most path planning systems im- 
plemented on physical robots have introduced a reactive layer 
and have been implemented in the hybrid style (e.g., [2], [31], 
etc.). Exceptions include [lo], which suggests a completely 
reactive subsumption-based scheme for navigation by path 
remembering, but this scheme was never fully developed 
or implemented. Lumelski and Stepanov [22] describe an 
entirely local navigation strategy independent of a map. Using 
Cartesian coordinates of the goal, the system relies on position 
control to either reach the goal or recognize failure. While 
general, the system does not build or maintain a representation 
of the environment in order to optimize its paths to the goal. 
Kuipers and Byun [18] describe a qualitative spatial learning 
method based on a landmark strategy similar to ours. The 
key differences lie in the nature of its landmarks (they are 
signature based), the lack of metric information (no metric 
path optimization is done), the static world assumption (no 
moving obstacles are allowed), and the fact that the system 
was tested in simulation. Examples of relevant graph discovery 
and exploration work are given in [ l l ]  and [13]. However, 
these are theoretical results that, in order to be applied to 
robots, require a perfect ability to determine the local graph 
structure. Such ability has not yet been demonstrated in 
physical robots. 

Ix. LIMITATIONS AND EXTENSIONS 

In order to implement a nonhybrid architecture, we at- 
tempted to minimize the translation overhead between the 
robot’s sensor space and the map representation. We chose a 
topological scheme, and instead of place-and-path graphs, used 
extended landmarks and their adjacency relationships. These 
primitives were chosen because they are directly available 
from the robot’s sensors and its low-level, reactive control 
system. 

Consequently, the method we describe is based almost 
entirely on topological information. This simplifies compu- 
tation but also limits it to optimizing paths only within the 
previously traversed path set. In an extension of the existing 
approach, the rough position information already available in 
the system could be used for making geometric inferences. For 
instance, the information could be used to generate shortcuts 
by producing novel, previously unexplored paths [24]. A 
related extension to the system would enable the robot to 
explore by following directions into as yet undiscovered areas. 

The current system allows the user to select a specific 
landmark or a landmark type as a goal by pressing buttons on 
the top of the robot. While the landmark primitives are well 
suited to the robot’s sensors and its task, they are not intuitive 
for the user. A mechanism for translating between the robot’s 
and the user’s map representation would make the interaction 
with the robot easier. Additionally, such a mechanism would 
allow for translating the robot’s internal representation into a 
form that could be used by other robots equipped with different 
types of sensors. Using the combination of the topological 
structure (the graph) and the metric data (the landmark lengths, 
the rough position estimates, the robot’s velocity, and the 
landmark threshold), it is possible to transform the map 
into other forms more accessible to people or other robots. 
Currently, the robot’s representation is well suited for its 
sensors and its task. However, if a different representation is 
needed in the future, the described transformation tool would 
be an interesting extension of this work. 

X. CONCLUSION 

We have described a strategy for integrating a distributed 
spatial representation into a fully reactive, subsumption-based 
mobile robot. The robot performs navigation, spatial mapping, 
and path planning, in real time based on real sensory data. 
Additionally, the robot can interact with a human operator 
and receive a variety of goal directives. The strategy is im- 
plemented as a collection of concurrently executing behaviors 
performing both representation and action tasks. 

The approach we presented derives its strengths from three 
main properties of the representation: it is qualitative, pro- 
cedural, and distributed. The qualitative nature keeps the 
granularity of the representation low but minimizes the com- 
putational overhead. Qualitative sensor characteristics are used 
to construct a fault-tolerant navigation behavior that facilitates 
a simple procedural landmark detection algorithm. The dis- 
tributed representation utilizes the benefits of parallel computa- 
tion in allowing for constant-time localization and linear-time 
path planning. The decentralized nature of the map permits 
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the planning computation to be performed by the map itself 
rather than by a separate planner. The system detects failures 
and dynamically adapts the map. 

The presented architecture is an alternative to the hy- 

[I81 B. Kuipers and Y. Byun, “A robust, qualitative approach to a spatial 
learning mobile robot,’’ in SPIE Sensor Fusion: Spatial Reasoning and 
Scene Interpretation, Nov. 1988, pp. 366-375. 

[19] R. Kuc and Y. Di, “Intelligent sensor approach to differentiating sonar 
reflections from corners and planes,” in Proc. Int. Congress Intell. 
Autonomous Systems (Amsterdam), 1986. 

[2Q] R. Kuc and R. Siegel, “Physically based simulation model for acoustic 
sensor robot navigation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 

brid approach Of separating the reactive and the 
parts of the control system. By removing the distinction 
between the control program and the map, the described 
distributed representation introduces added power to fully 
reactive subsumption-based architectures by extending their 

PAMI-9 no. 6, p i .  766-778, Nov. 1987. 
[21] T. Lozano-Perez, “A simple motion-planning algorithm for general 

robot manipulation,” IEEE J .  Robotics Automat., vol. RA-3, no. 3, pp. 
224-238. June 1987. 

domain to applications requiring internal spatial models and 
interaction with the user. 

(221 V. Lumelski and A. Stepanov, “Dynamic path planning for a mobile 
automation with limited information on the environment,” IEEE Trans. 
Automat. Control, vol. CA-31, no. 11, Nov. 1986. 

[23] 0. Khatib, “Real-time obstacle avoidance for manipulators and mobile 
robots,” Int. J .  Robotics Res., vol. 5, no. 1, pp. 9tL98, 1986. 

[24] M. Mataric, “A distributed model for mobile robot environment-learning 
and navigation,” MIT Artificial Intell. Lab., Tech. Rep. 1228, June 1990. 

[25] -, “Environment learning using a distributed representation,” in 
Proc. IEEE Int. Conf: Robotics Automat., May 1990, pp. 402-406. 

International Conference on Simulation of Adaptive Behavior, J. Meyer 
and S .  Wilson, Eds. Cambridge, MA: MIT Press, 1990, pp. 169-175. 
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