Problem 5.3

Force on sluice gate

Sluice gates are used to regulate water level (or flow rate) in open channels. The figure shows a gate that is adjusted so that the upstream depth is maintained at a depth h_1 . The density of water is ρ , and the acceleration of gravity is g. The water flow under the gate may be considered incompressible and inviscid.

Suppose the downstream depth is measured as h_2 , that is, the quantities h_1 , h_2 , ρ , and g are known.

(a) Assuming uniform velocities at the far upstream and downstream stations1 and 2 derive an expression for the horizontal force *F*, per unit breadth, required to hold the gate in place. Check your result by showing that it gives zero when $h_1 = h_2$ and the hydrostatic result $\rho g h_1^2/2$ when $h_2 = 0$.

HINT HINT 2 HINT 3 ANSWER

(b) Also obtain expressions for the velocities V_1 and V_2 and the volume flow rate Q per unit breadth in the stream. Show that as h_2 approaches zero, V_2 approaches $\sqrt{2gh_1}$. Explain.

HINT ANSWER