
# Problem 5.18

Rocket firing on test bed



The figure shows a rocket burning solid propellant, the system being mounted on a stationary test bed. The rocket body has an inside area  $A_1$  where the fuel is, and tapers to a smaller area  $A_2$  at the exit plane. The combustible solid propellant has a density  $\rho_f$  and burns at a constant rate  $\dot{m}_f$  kgm<sup>-2</sup>s<sup>-1</sup>. The combusted gases leave the solid interface with a density  $\rho_g < \rho_f$ ; the flow to the exit plane is essentially incompressible. (This is a good assumption only if Mach number at the exit is small.)

Given: 
$$A_1$$
,  $A_2$ ,  $\dot{m}_f$ ,  $\rho_f$ ,  $\rho_g$ .

(a) Derive an expression for the gas velocity  $V_{_{\boldsymbol{e}}}$  at the exit plane.

### HINT ANSWER

(b) Derive an expression for the *leftward* thrust  $F_s$  exerted by the rocket on its support.

## HINT ANSWER

(c) Assuming that the gas flow is inviscid and incompressible, obtain an expression for the gauge pressure in the gas region to the right of the solid propellant.

### HINT ANSWER

(d) What is the compressive stress  $\sigma_s$  inside the solid propellant?

### HINT ANSWER

(e) Your answers will show that all of the above quantities are zero when  $\rho_g = \rho_f$ . Explain.