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Motivation

• Understand interaction of 
modern electric power system 
with propeller torque variation 
in waves.

• Most electric power simulations 
use constant propulsive loads.
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Propeller-Hull-Engine Interaction in Literature
• J. Hou, J. Sun, and H. Hofmann, 

“Mitigating Power Fluctuations in Electric 
Ship Propulsion With Hybrid Energy 
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IEEE Oceanic Engineering, vol. 43, no. 1, 
pp. 93-107, 2018.
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Engineering, vol. 122, pp. 262-277, 2016.



A good “in-between” solution

• S.K. Lee, K. Yu, H.C. Chen, R.K.C. Tseng, “CFD Simulation for Propeller 
Performance under Seaway Wave Condition,” International Offshore 
and Polar Engineering Conference, 2010.



Setup for a Steady-State Propeller 
in OpenFOAM



Reynolds-Averaged Navier Stokes Equations

• Continuity
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k-omega SST Turbulence Model

• Transport of turbulent kinetic energy:
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• Transport equation for specific dissipation rate:
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• Blending k-ε and k-ω
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Wall Function

• Dimensionless wall distance:
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Boundary Conditions

Velocity (m/s) Pressure (Pa) k (m2/s2) ω (s-1) ντ (Pa-s)
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Solver: SIMPLE

• Gradient Scheme: Gauss Linear 

• Divergence Schemes
• U Gauss Linear 
• k, ω: linear upwind

• Laplacian Schemes: Gauss Linear 

• Interpolation Scheme: Linear

• Pressure Term:

• Solver: GAMG (Geometric Algebraic Multi-Grid Method)

• Smoother: Gauss Seidel

• Tolerance: 1e-8

• Velocity, k, ̟ Σ ˄terms: 

• Solver: smooth solver 

• Smoother: Gauss Seidel

• Tolerance: 1e-7



Grid Generation - snappyHexMesh

1. Generate background grid (structured)

2. Import propeller geometry

3. Intersect STL with background grid

4. Refine grid close to propeller

4. Remove inside cells

5. Snap cells to surface

6. Add prism layer


