Dynamic, Data-Driven Reduced-Order Models

Tony Ryu
Reduced Order Modelling (ROM)

- Cheaper alternative to full-model solve
- Built offline, used online

Peherstorfer (2016)
Dynamic Mode Decomposition (DMD) \(^{(1)}\)

\[
x_{k+1} = F(x_k)
\]

Discrete system

\[
x_{k+1} = A x_k
\]

Approximate, discrete, locally linear dynamical system

Kutz, et. al (2016)
Dynamic Mode Decomposition (DMD) (2)

Tall, skinny snapshot matrices

\[X = \begin{bmatrix} x_1 & x_2 & \cdots & x_{m-1} \end{bmatrix}, \]

\[X' = \begin{bmatrix} x_2 & x_3 & \cdots & x_m \end{bmatrix}. \]

\[\|X' - AX\|_F \]

\[A = X'X^\dagger \]

Kutz, et. al
Online DMD

\[x_1, x_2, x_3, \ldots \quad x_{k-1}, x_k \]

\[y_1, y_2, y_3, \ldots \quad y_{k-1}, y_k \]

Time

Zhang, et al. 2017
Online DMD

(1)

Rank-1 Updates

\[P_k = (X_k X_k^T)^{-1} \]

Is \(X_k X_k^T \) invertible?

Zhang, et al. 2017
Online DMD

(1)

Rank-1 Updates

\[P_k = (X_k X_k^T)^{-1} \]

\[\gamma_{k+1} = \frac{1}{1 + x_{k+1}^T P_k x_{k+1}} \]

\[P_{k+1} = (P_k^{-1} + x_{k+1} x_{k+1}^T)^{-1} = P_k - \gamma_{k+1} P_k x_{k+1} x_{k+1}^T P_k \]

\[A_{k+1} = A_k + \gamma_{k+1} (y_{k+1} - A_k x_{k+1}) x_{k+1}^T P_k \]

Zhang, et al. 2017
Online DMD

Weighted Online DMD

\[
\tilde{X}_k = \begin{bmatrix} \sigma^{k-1} x_1 & \sigma^{k-2} x_2 & \cdots & x_k \end{bmatrix}
\]

\[
\tilde{Y}_k = \begin{bmatrix} \sigma^{k-1} y_1 & \sigma^{k-2} y_2 & \cdots & y_k \end{bmatrix}
\]

Zhang, et al. 2017
MATLAB implementation

Sudden Expansion at large kinematic viscosity

Initial DMD

Sudden Expansion at small kinematic viscosity

Online DMD

Final DMD
Results

<table>
<thead>
<tr>
<th></th>
<th>Mode Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial DMD</td>
<td>6.5098</td>
</tr>
<tr>
<td>Online Updated DMD</td>
<td>5.6892</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Error (Rho = 1)</th>
<th>Error (Rho = 0.9999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial DMD</td>
<td>6.5098</td>
<td>6.8395</td>
</tr>
<tr>
<td>Online Updated DMD</td>
<td>5.6892</td>
<td>5.8391</td>
</tr>
</tbody>
</table>
Discussion/Future Work

- Limitations of needing $\text{rank}(X_k) > n$
 Anqi Bao, et al. (2019)

- Compressed-sensing DMD
 Kutz (2016)

Anqi Bao, Eduardo Gildin, Abhinav Narasingam and Joseph S. Kwon. Data-driven model reduction for coupled flow and geomechanics based on DMD methods, 2019
Questions?
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Standard</th>
<th>Batch</th>
<th>Mini-batch</th>
<th>Streaming</th>
<th>Online</th>
<th>Windowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational time Memory</td>
<td>$O(mn^2)$</td>
<td>$O(kn^2)$</td>
<td>$O(wn^2)$</td>
<td>$O(r^2n)$</td>
<td>$4n^2$</td>
<td>$8n^2$</td>
</tr>
<tr>
<td>Store past snapshots</td>
<td>mn</td>
<td>kn</td>
<td>wn</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Track time variations</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Real-time DMD matrix</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exact DMD matrix</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the various DMD algorithms considered. Relevant parameters are state dimension n, total number of snapshot pairs $m \gg n$, window size w such that $n < w \ll m$, low rank $r < n$, and discrete time $k > n$. Computational time denotes the required floating-point multiplies for one iteration (computing the DMD matrix).
Online DMD

\[\hat{P}_{k+1} = \frac{1}{\rho} (\hat{P}_k - \gamma_{k+1} \hat{P}_k x_{k+1} x_{k+1}^T \hat{P}_k) \]

\[\gamma_{k+1} = \frac{1}{1 + x_{k+1}^T \hat{P}_k x_{k+1}} \]

\[A_{k+1} = A_k + \gamma_{k+1} (y_{k+1} - A_k x_{k+1}) x_{k+1}^T \hat{P}_k \]

Zhang, et al. 2017
Results

<table>
<thead>
<tr>
<th></th>
<th>Mode Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial DMD</td>
<td>6.5098</td>
</tr>
<tr>
<td>1 Update</td>
<td>6.4331</td>
</tr>
<tr>
<td>2000 Updates</td>
<td>5.4332</td>
</tr>
<tr>
<td>5000 Updates</td>
<td>5.3270</td>
</tr>
<tr>
<td>7000 Updates</td>
<td>5.6892</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Error (Rho = 1)</th>
<th>Error (Rho = 0.9999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial DMD</td>
<td>6.5098</td>
<td>6.8395</td>
</tr>
<tr>
<td>1 Update</td>
<td>6.4331</td>
<td>6.6461</td>
</tr>
<tr>
<td>2000 Updates</td>
<td>5.4332</td>
<td>6.0202</td>
</tr>
<tr>
<td>5000 Updates</td>
<td>5.3270</td>
<td>6.1574</td>
</tr>
<tr>
<td>7000 Updates</td>
<td>5.6892</td>
<td>5.8391</td>
</tr>
</tbody>
</table>