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What and Why

» Supercritical helium is used to maintain superconducting magnets cold enough
to sustain large electrical currents without loss

» Fusion systems require these magnets to confine their plasma
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Supercritical Fluid

» ldeal Gas » Incompressible Fluid
» Simple, algebraic equation of state » No change in density
» Compressible flow » Divergence-free velocity field
» Constant transport properties » Energy equations decoupled from
: momentum equations
» Coupling of energy, momentum,

mass equations that may be non-
linear but are entirely algebraic

» Supercritical fluid
» Equation of state complicated

» Large relative changes in
properties with temperature

» Full coupling of energy, momentum
and mass equations with possibly
non-algebraic relations (worse than
non-linear!)




Governing Equations for a 1-D flow

» Mass
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» Momentum
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» Energy
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Original Solution Method

» All spatial derivatives are 2" order centered space (except at boundaries)

» FTCS method for the advection equation are unstable without adequate
diffusion, so need at least semi-implicit method:

» System is non-linear, and not all equations are known algebraic functions. So we
need an iterative method

» Jacobi’s method with modified SUR for implicit time scheme (1t order
convergence)

» Check the CFL condition
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Modified SUR

» Goal of successive relaxation is to reduce spectral radius of B (reduce impact
of minor variations blowing up) with the parameter w

» w ~ 1: Nearly a full step, but spectral radius of B may be too large and solution
blows up

» w small: Slight increment to final solution, many iterations, long solution time.

» How can we balance the two?



Modified SUR

» Start withw ~ 1

» If the solution starts to get worse,
cut w by a factor (0.5)

» Slowly increase w by another
factor each step (about 1.05) to
help rate of convergence

» If solution converging slowly (i.e.
due to oscillations)

» Cut w by a factor (0.5)

» Algorithm may get too aggressive
in reducing w, so stop when w
reaches a certain min value and
call it a loss

» Goal is to tune these parameters
to achieve convergence at almost
all time steps




Original Solution
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Improved Scheme: C-N

» The solution method is an iterative implicit method, so we get knowledge of

the time derivatives at step k as well as at step k+1 without any additional
computation.

» Implement the C-N scheme for 2"d order time accuracy

» s it stable? The equations are non-linear so von-Neumann analysis makes no
promises

» Unfortunately, it is not stable enough

» Bug in code or simply need the diffusion from the purely implicit method



C-N Implementation
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Final Thoughts

» Highly coupled non-linear system of PDEs, even in 1 spatial dimension, is difficult
to solve

» Needed implicit method for advection instability
» Needed small time steps to ensure stability from non-linear terms
» Use Jacobi’s method with a modified relaxation method to solve

» Why not a root-finding algorithm? Time. The jacobian matrix (or even its estimate using
FD) was neither sparse nor small.

» Ease of handling changing boundary conditions

» SUR method tunable to get best chance of stability
» Future work

» Implement faster convergence method

» Improve the C-N scheme so that it is stable



Questions?




