Stirring of Ceramic Resins for 3D Printing

Gina Han

5.20.21

Mixing time affects 3D printing

difference from 2 days of mixing

Reference materials

stirred tank reactor (water, air)

geometry, meshing reference

goal is to combine!

(set up the problem)

fluidized bed (glass particles, air)

physics, phase interaction reference

Meshing

snappyHexMesh

- generates 3D mesh with hexahedra and split-hexahedra from triangulated surfaces of STL files
- start with a blockMesh that encompasses extra volume, then conforms to surface by iteratively refining starting mesh

[&]quot;Mastering twoPhaseEulerFoam Four: Two-Phase Stirred Tank Reactor" Hamidreza Norouzi

Moving walls for mixing:

used multiple reference frame (MRF) technique

whole volume subdivided into:

- one (or more) rotating zone
- one stationary zone

can rotate the impeller without moving mesh by making necessary changes in momentum equation

$$\vec{u}_r = \vec{u} - (\vec{\Omega} \times \vec{r})$$
 $\vec{u}_r = \text{absolute velocity}$ $\vec{\Omega}_r = \text{rotation speed}$

 \vec{u}_r = relative velocity

 \vec{r} = vector from rotation center to point of \vec{u}_r

$$\frac{\partial}{\partial x}(\rho \vec{u}) + \nabla \cdot (\rho \vec{u}_r \vec{u}) + \rho(\vec{\Omega} \times \vec{u}) = RHS$$
Coriolis force

Multiphase model of choice

multiphase system: twoPhaseEulerFoam

- each phase treated as interpenetrating continuum
- phases represented by a volume fraction at each point of the system
- fluid-fluid couples differently from solid-fluid
- particle-wall and particle-particle interactions can be considered

liquid: Reynolds Averaged Simulation (RAS), k-ε

solid: stress tensor kinetic theory of granular flow

"CFD Simulation of Solid-Liquid Stirred Tanks for Low to Dense Solid Loading Systems" Wadnerkar et al.

Treatment of particles

particles &turbulence:

- simplest: *phasePressure*
 - no shear stress tensor considered for the solid (considered an inviscid fluid)
 - solid pressure becomes high near maximum packing, solid cannot be packed beyond max
- model used: kineticTheory
 - viscosity (thus shear stress tensor) of the solid estimated by "granular temperature"

particles & boundary conditions:

- granular flow: behave between no-slip & slip conditions
- Jahnson & Jackson (1987) proposed BCS for solid velocity & granular temperature

$$\mu_{S} \frac{\partial u_{S}}{\partial x} = -\frac{\pi \phi_{S} \rho_{S} \alpha_{S} g_{0} \sqrt{\theta_{S}}}{2\sqrt{3} \alpha_{S}^{max}} u_{S}$$

$$\kappa_{s} \frac{\partial \theta_{s}}{\partial x} = -\frac{\pi \phi_{s} u_{s}^{2} \rho_{s} \alpha_{s} g_{0} \sqrt{\theta_{s}}}{2\sqrt{3} \alpha_{s}^{max}} - \frac{\pi \sqrt{3} \rho_{s} \alpha_{s} g_{0} (1 - e_{W}^{2}) \sqrt{\theta_{s}}}{4 \alpha_{s}^{max}} \theta_{s}$$

Results: it runs

water – glass particles

resin – ceramic particles

9.9e-01

alpha.particles

- 0.8

- 0.6

-0.4

- 0.2

- 0.0e+00

A look at some papers on the topic

Figure 1. The studies conducted above 10% volumetric concentration.

"CFD Simulation of Solid-Liquid Stirred Tanks for Low to Dense Solid Loading Systems" Wadnerkar et al. "CFD simulation of liquid-phase mixing in solid-liquid stirred reactor" Kasat et al.

- stirring at high solid concentrations not as widely studied
- also harder to validate experimentally
- Euler-Euler most common
- Reynolds averaged simulation (RAS) based
 k-ε most common
- many other schemes could be used (LES, Reynolds Stress models)
- also many different models & methods for drag & turbulence dispersion force

How to determine if something is fully mixed?

"suspension quality"

- cloud height = 90% liquid height
- standard deviation of α solids concentration < 0.2

[&]quot;CFD simulation of liquid-phase mixing in solid–liquid stirred reactor" Kasat et al.

How to determine if something is fully mixed?

"suspension quality"

- cloud height = 90% liquid height
- standard deviation of α solids concentration < 0.2

Future work

- reduce computational cost
- geometry changes different mixing methods
- more phenomena? different schemes?
- experimental validation

[&]quot;CFD simulation of liquid-phase mixing in solid–liquid stirred reactor" Kasat et al.

Thank you!