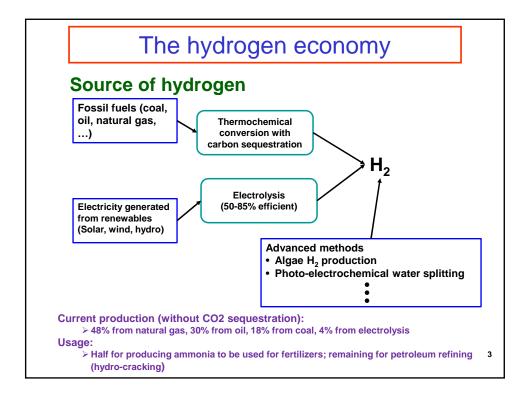
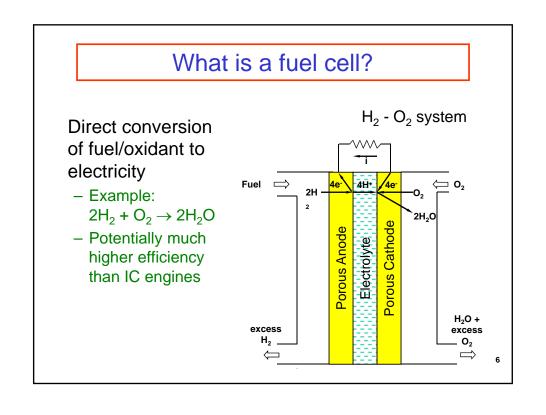
Hydrogen, fuel cells, batteries, super capacitors, and hybrids


1

The hydrogen economy

Premise:


$$H_2 + O_2 \rightarrow H_2O$$

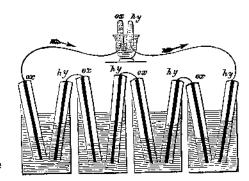
LHV = 120 MJ/kg (33.3 KW-hr/kg)

- Energy production via combustion or fuel cell
- No green house gas; clean

Transportation Fuels				
Fuels	Density	LHV/mass* LHV/vol.**		LHV/Vol. of Stoi.Mixture @1 atm,300K
Gasoline Diesel	(Kg/m³) 750 810	(MJ/Kg) 44 42	(MJ/m³) 3.3x10 ⁴ 3.4x10 ⁴	(MJ/m³) 3.48 3.37
Natural Gas @1 bar @100 bar LNG (180K, 30bar)	0.72 71 270	45	3.2x10 ¹ (x) 3.2x10 ³ 1.22x10 ⁴	3.25
Methanol Ethanol	792 785	20 26.9	1.58x10 ⁴ 2.11x10 ⁴	3.19 3.29
Hydrogen @1bar @100 bar Liquid (20K, 5 bar)	0.082 8.2 71	120	0.984x10 ¹ (x) 0.984x10 ³ 8.52x10 ³	2.86

The hydrogen economy (H2 as transportation fuel) **Obstacles** Storage: Low energy density; need compressed or liquid H₂ Compressing from 300°K, 1 bar to 350 bar, ideal compressor work = 16% of LHV; practical energy required upwards of 35% of LHV Liquefaction (20°K, 1 bar LH2) work required is upwards of 60% of LHV' 5.6 kg of H2 ~700 MJ ANL Analysis 5.6 kg Usable H₂ Fuel tank capacity netric Capacity (g/L) of 50 kg carries ~2200 MJ CcH2: cryogenic compressed LH2 cH2: compressed H2 MOF: Metal organic framework for LH2 omnoo 20 10 Gravimetric Capacity (wt%) • Infra structure: Supply, safety, ... The hydrogen economy has significant hurdles 5 *Value adopt from NREL/TP-570-25106

History of Fuel Cell

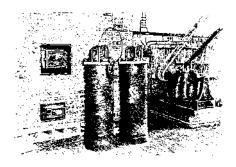

- Sir William Grove demonstrated the first fuel cell in 1839 (H2 O2 system)
- Substantial activities in the late 1800's and early 1900's
 - Theoretically basis established
 Nerst, Haber, Ostwald and others
- Development of Ion Exchange Membrane for application in the Gemini spacecraft in the 1950/1960
 - W.T. Grubb (US Patent 2,913,511, 1959)
- Development of fuel cell for automotive use (1960s to present)

7

The Grove Cell (1839)

- Important insights to fuel cell operation
 - H2-O2 system (the most efficient and the only practical system so far)
 - Platinum electrodes (role of catalyst)
 - recognize the importance of the coexistence of reactants, electrodes and electrolyte

W.R.Grove, 'On Gaseous Voltaic Battery," Pil. Mag., **21**,3,1842 As appeared in Liebhafsky and Cairns, *Fuel Cells and Fuel Batteries*, Wiley, 1968


The coal/air cell

Wilhelm Ostwald (1894)

"The way in which the greatest of all industrial problems – that of providing cheap energy – is to be solved, must be found by electrochemistry"

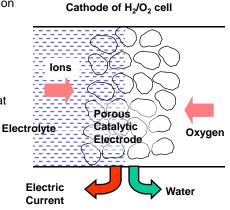
Status at 1933

 Low efficiency and contamination of electrodes doomed direct coal conversion

The 1896 W.W.Jacques large carbon cell (30KW)
Picture and quote from Liebhafsky and Cairns, *Fuel Cells and Fuel Batteries*, Wiley, 1968

Critical processes

Reactions (anode and cathode)


- > Pre-electrochemical chemical reaction
- > Electrochemical reaction
- Post-electrochemical chemical reaction

Transport

- > Transport of ions in electrolyte
- > Fuel/oxidant/ion/electron transport at electrodes

• Role of the electrolyte

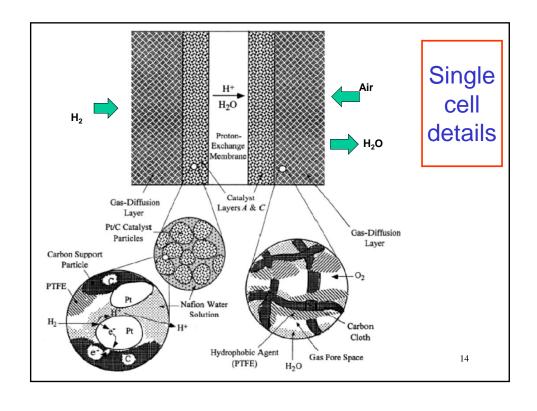
- > To provide medium for electrochemical reaction
- to provide ionic conduction and to resist electron conduction
- > separation of reactants

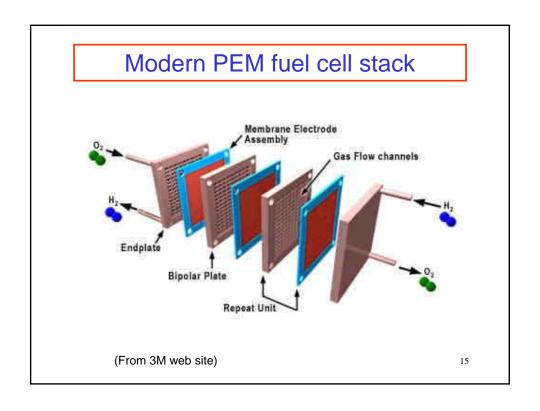
Types of fuel cell

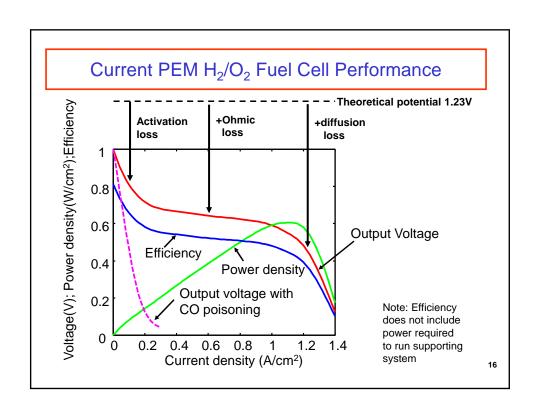
- Classification by fuel
 - Direct conversion
 - > Hydrogen/air (pre-dominant)
 - ➤ Methanol/air (under development)
 - Indirect conversion
 - >reform hydrocarbon fuels to hydrogen first
- Classification by charge carrier in electrolyte
 - ≻H+, O²- (important difference in terms of product disposal)

11

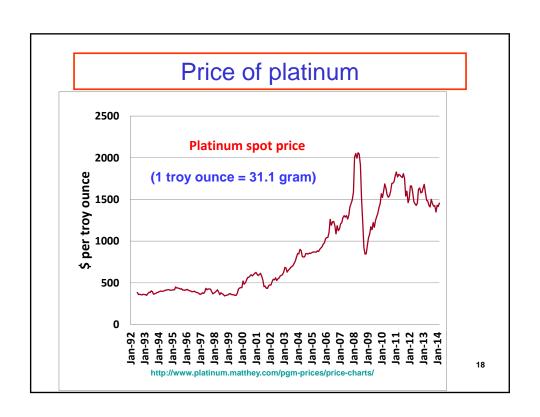
Types of fuel cell (cont.)


- By electrolyte
 - Solid oxides: ~1000°C
 - Carbonates: ~600°C
 - H₃PO₄: ~200°C


High temperature fuel cells are more tolerant of CO and other deactivating agents

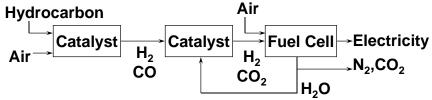

- Proton Exchange Membrane (PEM): ~80°C

Automotive application



Fuel cell as automotive powerplant

- Typical fuel cell characteristics
 - 1A/cm², 0.5-0.7 V operating voltage
 - 0.5-0.7 W/cm² power density
 - stack power density 0.7 kW/L
 - System efficiency ~50%
 - \$500/kW
 - ➤DOE goal \$35/KW at 500,000 per year production
 - >compared to passenger car at \$15-20/kW
 - Platinum loading ~0.3 mg/cm²
 - ➤ 30g for a 60kW stack (Jan., 2014 price ~\$1500)
 - >(automotive catalyst has ~2-3g)


The Hydrogen problem:

Fundamentally H₂ is the only feasible fuel in the foreseeable future

- Strictly, hydrogen is not a "fuel", but an energy storage medium
 - Difficulty in hydrogen storage
 - Difficulty in hydrogen supply infra structure
- Hydrogen from fossil fuel is not an efficient energy option
- Environmental resistance for nuclear and hydroelectric options

19

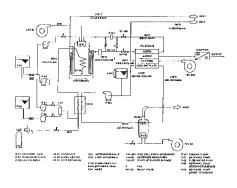
The hydrogen problem: H₂ from reforming petroleum fuel

Note: HC to H₂/CO process is exothermic; energy loss ~20% and needs to cool stream (Methanol reforming process is energy neutral, but

energy loss is similar when it is made from fossil fuel)

Current best reformer efficiency is ~70%

Problems:


CO poisoning of anode

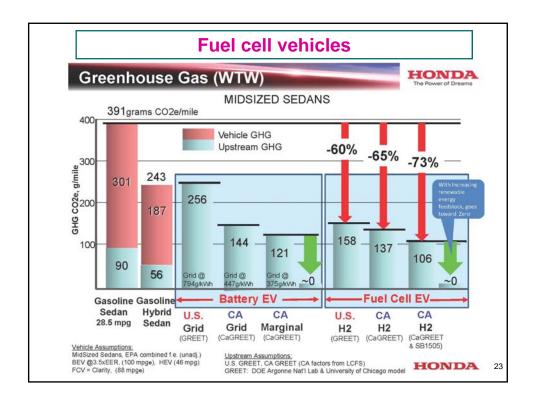
Sulfur poisoning

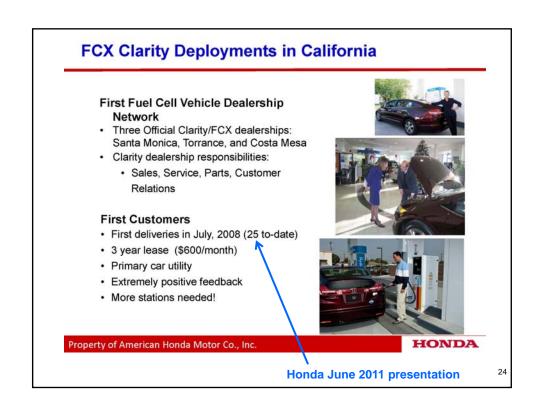
Anode poisoning requires S<1ppm

Reformer catalyst poisoning requires S<50ppb

Fuel cell powerplant with fuel reforming

Practical Problems


Start up/shut down Load Control Ambient temperature Durability GM (May, 2002) Chevrolet S-10 fuel cell demonstration vehicle powered by onboard reformer


2

Fuel cell outlook

- Too many barriers
 - Cost: unlikely to come down because of price of precious metal
 - System complexity
 - ➤ Management of hydration, temperature, cold start, cold climate, ...
 - Hydrogen supply
 - ➤ Source
 - ➤ Infra structure
- Battery is a more practical option

Unless there is exceptional break through, fuel cell is not going to be a transportation powerplant component

Batteries

- Electrochemical energy source
- Rechargeable batteries
 - Electrical energy storage
- Attributes
 - Energy density (by mass and volume)
 - Power density
 - Cost

25

Battery electrochemistry

Lead acid battery: lead electrodes; dilute sulfuric acid as electrolyte

```
Charging (forward) / discharging (reverse)
```

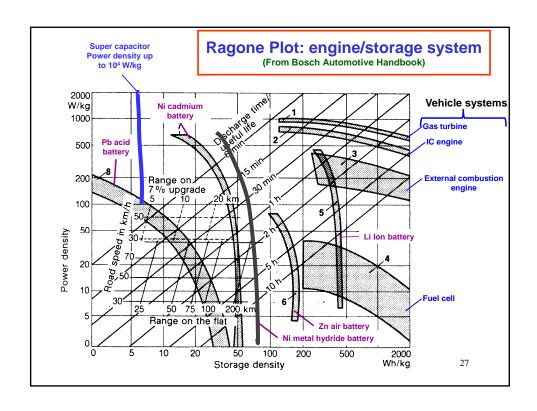
Anode (in charging):

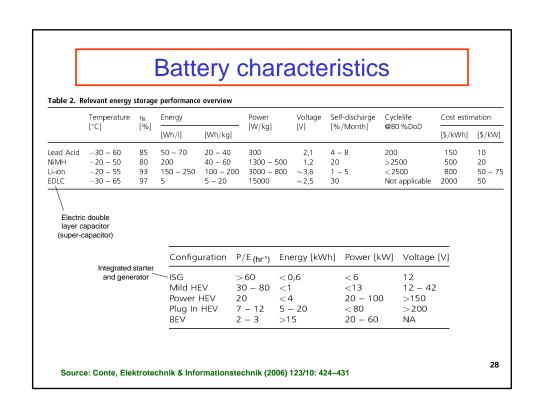
 $PbSO_4(s) + 2H_2O(aq) \rightleftharpoons PbO_2(s) + HSO_4(aq) + 3H^+(aq) + 2e^-$

Cathode (in charging):

 $PbSO_4(s) + H^+(aq) + 2e^- \rightleftharpoons Pb(S) + HSO_4^-(aq)$

Li ion battery: e.g. LiCoO2 anode; graphite cathode


Charging (forward) / discharging (reverse)


Anode (in charging):

 $LiCoO_2 \rightleftharpoons Li_{(1-x)}CoO_2 + xLi^+ + xe^-$

Cathode (in charging):

 $xLi^{+} + xe^{-} + 6C \rightleftharpoons Li_{x}C_{g}$

Battery for the Chevy Volt

40 miles range

- 288 cell Li-ion battery; 16 kW-hr capacity
 - System weight 190 kg
 - Package as 3 cells in parallel as one unit; 96 units in series
 - 360 VDC; peak current 40A over 30 sec
- Thermal management
 - Cool and heated by 50/50 de-ionized water and glycol
 - 1.8 kW heater for heating in cold climate

Source: Parish et al, SAE Paper 2011-01-1360

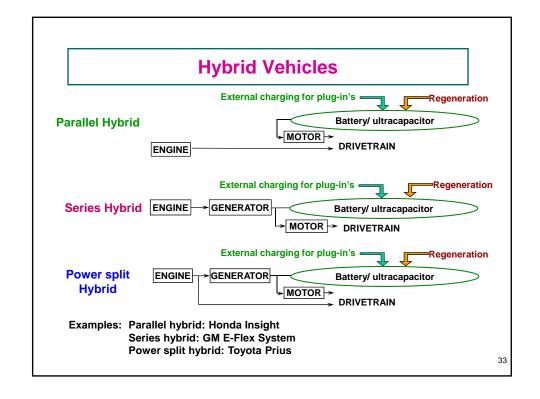
29

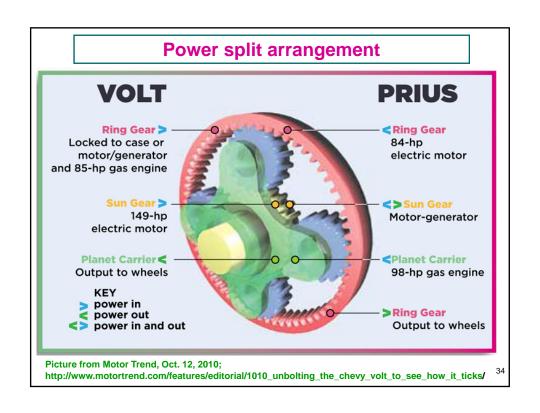
EDLC (super-capacitor)

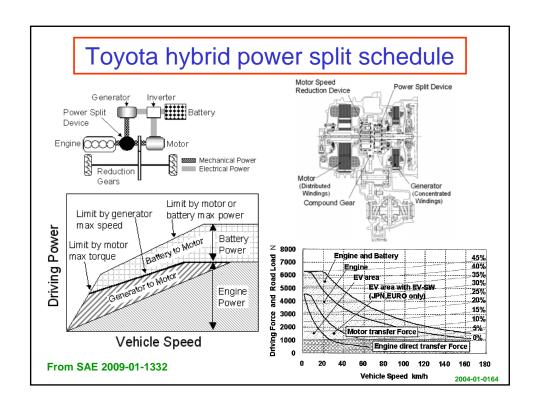
Transportation application: Complementary to battery

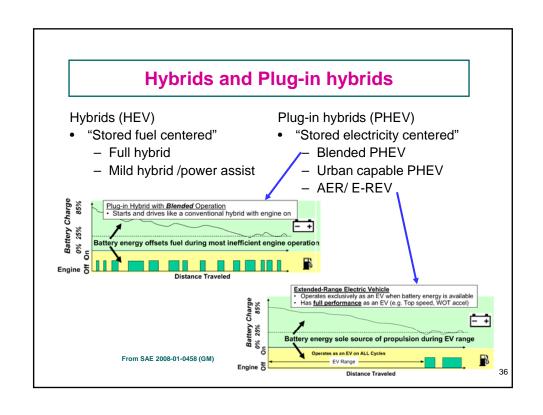
- Advantages
 - Charging/discharging by charge transfer; no chemistry involved fast rates
 - ➤ High power density (10x to 100x that of conventional battery)
 - > Fast charging time
 - Almost unlimited life cycle (millions of cycles)
 - Low internal resistance; high cycle efficiency (95%)
- Disadvantages
 - Low energy density (10% of conventional battery)
 - High self discharge rate
 - Very high short circuit current; safety issue
 - High cost (\$5K-10K/kW-hr)
 - > cost in the activated carbon electrode manufacturing

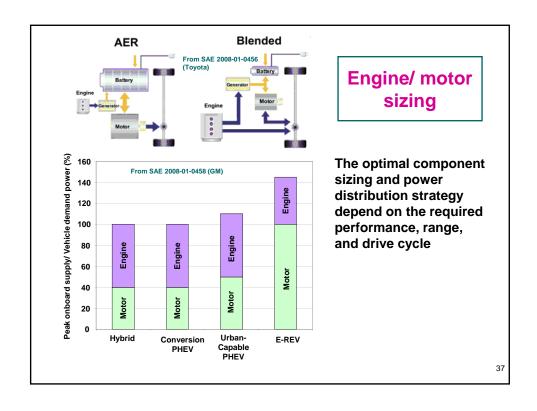
31

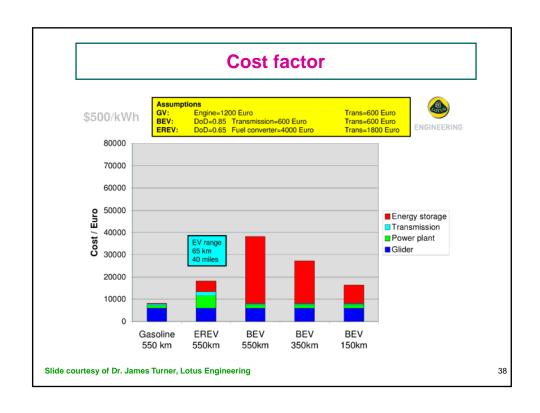

Hybrid vehicles

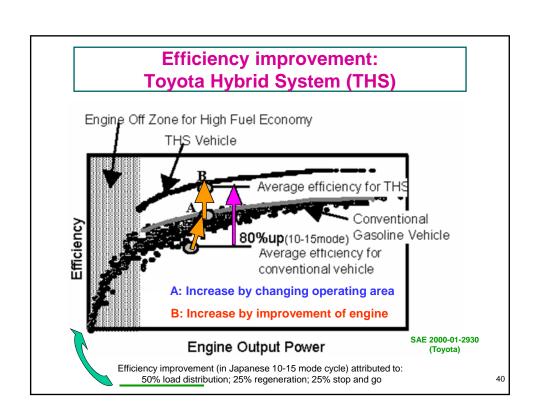

Configuration:

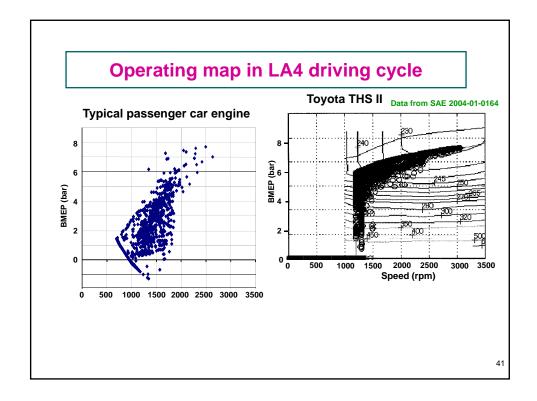

IC Engine + Generator + Battery + Electric Motor


Concept


- Eliminates external charging
- · As "load leveler"
 - · Improved overall efficiency
- Regeneration ability
- Plug-in hybrids: use external electricity supply







HEV TECHNOLOGY

Toyota Prius

- Engine: 1.5 L, Variable Valve Timing, Atkinson/Miller Cycle (13.5 expansion ratio), Continuously Variable Transmission
 - 57 KW at 5000 rpm
- Motor 50 KW
- Max system output 82 KW
- Battery Nickel-Metal Hydride, 288V; 21 KW
- Fuel efficiency:
 - 66 mpg (Japanese cycle)
 - 43 mpg (EPA city driving cycle)
 - 41 mpg (EPA highway driving cycle)
- Efficiency improvement (in Japanese cycle) attributed to:
 - 50% load distribution; 25% regeneration; 25% stop and go
- Cost: ~\$20K

Hybrid cost factor

If Δ \$ is price premium for hybrid vehicle P is price of gasoline (per gallon) δ is fractional improvement in mpg

Then mileage (M) to be driven to break even is

$$M = \frac{\Delta \$ x mpg}{P x \left(1 - \frac{1}{1 + \delta} \frac{E}{P}\right)}$$

For hybrid E=P For E-REV, E is cost of electricity for energy equivalent of 1 gallon of gasoline

(assume that interest rate is zero and does not account for battery replacement cost)

Hybrid cost factor

Example:

Ford Fusion and Ford Fusion-Hybrid

Price premium (Δ \$, MY13 listed) = \$5300 (\$27200-\$21900) mpg (city and highway combined) = 27 mpg (47 for hybrid) hybrid improvement in mpg(%) = 74%

At gasoline price of \$4.00 per gallon, mileage (M) driven to break even is

$$M = \frac{5300 \times 27}{4 \times \left(1 - \frac{1}{1 + 0.74}\right)} = 84 \text{ K miles}$$

(excluding interest and battery replacement cost)

13

EREV cost factor

Example:

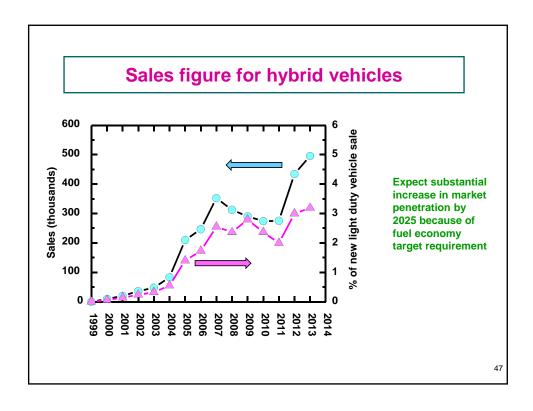
Chevrolet Cruise versus Volt (EREV)

Price premium (Δ \$, MY13 listed) = \$19000 (\$39145-\$20145) mpg (city and highway combined) = 30 mpg vs 98 mpg_e for PHEV hybrid improvement in mpg(%) = 227%

At gasoline price of \$4.00 per gallon, and electricity of \$0.12/KWhr (\$4.04/gallon equivalent*), mileage (M) driven to break even is

$$M = \frac{19000 \times 30}{4 \times \left(1 - \frac{1}{1 + 2.27} \frac{4}{4.04}\right)} = 204 \text{ K miles}$$

*EPA definition: Energy of 1 gallon of gasoline=33.7 KWhr


Barrier to Hybrid Vehicles

- Cost factor
 - difficult to justify based on pure economics
- Battery replacement (not included in the previous breakeven analysis)
 - California ZEV mandate, battery packs must be warranted for 15 years or 150,000 miles: a technical challenge

4

Hybrid Vehicle Outlook

- Hybrid configuration will capture a significant fraction of the passenger market
 - Fuel economy requirement
 - Additional cost is in the affordable range
- Plug-in hybrids
 - Much more expansive (hybrid + larger battery)
 - Weight penalty (battery + motor + engine)
 - No substantial advantage for overall CO₂ emissions
 - Limited battery life

