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Precision Machine Design

Topic 11

Vibration control step 2:
Damping

Purpose:
Damping is one of the most important, yet misunderstood, factors in
machine design.  Without proper damping, a machine or process can
shake itself into ineffectiveness.

Outline:
• The importance of damping

• Damping, stiffness and mass effects on system servo bandwidth

• Material damping

• Tuned mass dampers

• Constrained layer dampers

• Replicated internal viscous dampers

"Be always sure you're right - then go ahead"

David Crockett
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The importance of damping
• Damping is needed to absord energy from the process:

• To prevent chatter and damage to the surface.

• To absorb energy from structural modes excited by the servos.

• Damping can be obtained by internal means:

• Material damping.

• Damping by microslip in joints.

• Damping can be obtained by external means:

• Tuned mass dampers.

• Constrained layer dampers.

• Active dampers.

• Velocity feedback in servos

• Actively controlled damped masses attached to the
structure.
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Damping, stiffness and mass effects on system servo
bandwidth
• There are three primary sources of excitation in a system that

require the servo to have a minimum bandwidth:

• Self-excited structural vibrations

• Step response

• Contouring speed requirements

• A simple model can help the designer ensure that sufficient
damping is made available.

• External disturbance force requirements

• Difficult to determine the effects of system parameters without
a complete dynamic simulation including the controller.
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• For determining system parameters to prevent  self-excited
structural vibrations:

• Model the system with a motor driving a carriage in the following
manner:

c1 c2

m1

k2

m2F

• m1 is the mass of a linear motor forcer or:

• m1 is the  reflected inertia of the motor rotor and leadscrew (or
just a linear motor's moving part):

reflectedM =
4 2p J

2l
• M2 is the mass of the carriage.

• C1 is the damping in the linear and rotary bearings.

• C2 is the damping in the actuator-carriage coupling and the
carriage structure.

• K2 is the stiffness of the actuator and actuator-carriage-tool
structural loop.
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• The equations of motion are:

1m 0
0 2m

1˙ ̇ x 
2˙ ̇ x 

+
1c + 2c - 2c
- 2c 2c

1˙ x 
2˙ x 

+
2k - 2k

- 2k 2k
1x
2x

=
F(t)

0
• The transfer function x2/F (dynamic response of the carriage) is:

2x
F

= 2k + 2c s
1c s 2k + 2c s + 2m 2s( ) + 1m + 2m( ) 2s 2k + 2c s( ) + 1m 2m 4s

• Note the product of the masses term which tends to dominate the
system.
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• Calculated parameters of four possible systems are:

Actuator ballscrew lin. motor lin. motor lin. motor
Bearings linear ball linear ball air air
Structural damping no no no yes
material damping zeta 0.005 0.005 0.005 0.1
actuator to ground zeta 0.05 0.03 0 0
m1 (actuator) (kg) 50 5 5 5
m2 (carriage), kg 50 50 50 50
c1 (N/m/s) 355 187 0 0
c2 (N/m/s) 19 19 19 374
k1 (N/m)

Bandwidth (Hz)

1.75E+08

25

1.75E+08

100

1.75E+08

30

1.75E+08

100

• As a guideline, the servo bandwidth of the system is:

• Generally limited by the frequency the servo can drive the
system at without exciting structural modes.

• Without special control techniques can be no higher than the
frequency:

• Found by drawing a horizontal line 3 dB above the resonant
peak to intersect the response curve.

• This method is used only to initially size components.

• A detailed controls simulation must be done to verify performance,
and guide further system optimization.
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• The response of the ballscrew driven carriage supported by rolling
element linear bearings will be:

20. 50. 100. 200. 500. 1000. 2000.

Hz

1. 10
     -11

1. 10
     -10

1. 10
     -9

1. 10
     -8

1. 10
     -7

Transfer Function x2/f

• In this case, since preloaded linear guides and a ballnut are used,
damping to ground will be high.

• The inertia of the screw will lower the system frequency considerably
(note the m1m2s4 term in the TF)

• The system bandwidth will be limited to about 25 Hz.

• The Ballscrew was inertia matched to the carriage:

Diameter 0.025
Lead 0.003
Length 0.5
Axial K (N/µm) 203
J 9.6E-06
Reflected inertia = 4p2J/l2 42
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• External disturbance force effects on required servo bandwidth

c1 c2

m1

k2

m2F Fdisturbance

• Difficult to determine the effects of system parameters without a
complete dynamic simulation including the controller.

• A high degree of structural damping is required as before.

• Use the previous analysis method to determine the degree of
structural damping required.

• Either a very high static and dynamic stiffness actuator is
required (e.g., a ballscrew) or:

• A modest stiffness actuator (linear motor) with a high degree of
damping to ground is required.

• This topic is discussed in greater detail in the context of linear
power transmission system requirements.
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Material damping
• Hysteresis losses from the motion of dislocations in a material under

stress are typically 2-3%/cycle.

• Quantifiers of the amount of damping include:

h Loss factor of material (%)

hs Loss factor of material (geometry and load dependent)

Q Amplification at resonance factor  (Ar)

f Phase angle f between stress and strain (hysteresis factor)

d Logarithmic decrement (dLd) 1

DU The energy dissipated during one cycle

z The damping factor associated with second order systems

kdynamic
kstatic

 = 1
Q

 = h = 1
Ar

 = d
p

 = f  = DU
2pU

                                                
1 Most texts on vibration refer to the log decrement as d; however, to avoid confusion
with discussions on displacement termed d, the log decrement will be referred here to as
dLd.



© 1994 by Alexander H. Slocum

11-10

10

• The logarithmic decrement dLd is used to relate impulse response
data to system parameters:

• dLd is a measure of the relative amplitude between N successive
oscillations of a freely vibrating system:

dLd = -1
N

 loge aN
a1

• The logarithmic decrement can also be related to:

• The damping factor z.

• Velocity damping factor b.

• Mass m.

• Natural frequency wn of a second order system model.

z = dLd

4p2 + dLd
2

b = 2mzwn

• The peak amplification at resonance of a second order system is
given by

Q = Ar = 1
2z 1 - z2

    (z £ 0.707)  

1 2 3 4

-1.5

-1

-0.5

0.5

1

1.5

2

t

• Here, n = 4, a5 = 0.5, a1 = 1.5, dld = 0.275, z = 0.44, and Q = 11.5
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Damping from joints
• Microslip in the joints dissipates energy by friction.

• Contact between the machine bed and the ground, and joints
between components creates the total damping2:

d Q
0.30 10
0.28 11
0.26 12
0.24 13
0.22 14
0.20 16
0.18 17
0.16 20
0.14 22
0.12 26
0.10 31
0.08 39
0.06 52
0.04 79
0.02 157

Cast Bed Bed + Bed + Bed + Machine
Carriage Spindle Carriage Complete

Spindle

                                                
2 This historical figure (from data from the 1800's) was provided by Dr. Richard
Kegg of Cincinnati Milacron.
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Case Study
• An old sliding contact bearing machine was rebuilt with linear

motion ball bearings and more range of motion.

• Rolling element bearings have 1/10th the friction (damping) of
sliding contact bearings.

• Rolling element bearings allow for 10x better positioning
accuracy than sliding contact bearings.

• The structural loop static stiffness was maintained.

• The structural loop length (distance from the bearings to the tool)
was greatly increased.
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Cutting tests
• The new machine made very accurate parts.

• When making heavy cuts, the surface finish was very poor, even
though the same tooling was used as with the old machine!

• The bearing vendor suggested using a bigger stiffer (more
expensive) linear motion guide.

• The Nerd consultant noticed, that when cutting, there was a high
pitch squeal.

• Squealing sounds are in the kHz range.

• Most machine tool structural vibration s are in the 100's Hz
range.

• kHz frequencies are caused by short stiff structures (the
tooling).

• The Nerd wrapped the tool shank in electrical tape, and a mirror
surface finish was obtained!

• The tool was unwrapped, and tape was place between the tooling
block and the crosslide, and good surface finish was also obtained.

• Dowel pins can keep establish the planar position of the
tooling block.

• The damping tape (e.g., a 1/4 mm layer of ScotchDamp™
from 3M) provides enhanced joint damping.
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What was the difference between the new and old
machines?
• The old machine had strong dampers (sliding bearings) closer to the

tool.

• When the tool was vibrating, it coupled with a mode of the
crosslide which was damped by the bearings.

• The new machine structure was larger and although it was statically
stiff, its frequency was far lower than the tool.

• The tool acted independently and chattered.

• Morals of the story:

• All modes (machine elements) in the structural loop should be
damped.

• Any element left undamped can become the resonance source.

• Keep a supply of viscoelastic damping tape handy!

• Be prepared to do more dynamic analysis before and after the
machine is built!
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Material damping:
• Typical data shows wide variations because damping is so sensitive to

boundary conditions:3



Material Load T1 T2 s1 s2 f1 f2 z1 z2 Q1 Q2
(oK) (oK) (ksi) (ksi) (Hz) (Hz)



Alumina 5.00E-06 1.50E-05 100000 33300
Aluminum (6063-T6) bending 1 6 2.50E-04 2.50E-03 2000 200
Aluminum (pure annealed) axial 50 300 3.50E-06 1.00E-05 143000 50000
Beryillium (18.6%Be) unspec. 2 50 7.50E-03 4.10E-01 66.7 1.3
Copper (brass) bending 50 600 1.50E-03 3.00E-03 333 167
Copper (pure annealed) bending 20 550 3.50E-03 1.00E-03 143 500
Glass bending 10 100 1.00E-03 3.00E-03 500 167
Granite (Quincy) bending 140 1600 2.50E-03 5.00E-03 200 100
Iron (cast, annealed) bending 100 2000 6.00E-04 1.50E-03 833 333
Iron (mild steel) bending 2.5 5.5 4.50E-04 7.00E-04 1110 714
Lead bending 20 160 4.00E-03 7.00E-03 125 71.4
Polymer concrete bending 3.50E0-03 143
Portland cement concrete bending 1.20E-02 41.7
Quartz (ground, piezo) unspec. 65k 5.00E-06 100000
Sand (loose on an Al beam)

beam alone bending 1000 4000 1.00E-03 500
50% wt. layer of sand bending 1000 4000 4.00E-02 9.95E-02 12.5 5.1
100% wt. layer of sand bending 1000 4000 9.95E-02 4.10E-01 5.1 1.3

Silica (fused, annealed) axial 73 1073 5.00E-07 5.00E-05 1000000 10000
Silicon nitride (n) unspec. 1.25E-05 40000
Soil (misc.) unspec. 6 30 4.99E-02 10.0



• Note that the greatest degree of damping is obtained when sand is
loaded on top of the beam.

• Material damping is very low compared to the damping from a
damping mechanism.

• "Old timers" knew that a machine could be damped by filling it
with fine sand or lead shot.

• One had to be sure the added weight did not deform the
machine.

• Viscous dampers (discussed in detail later) can be designed to yield
an 10x more damping than that of structural materials.

                                                
3 Data from sources in B. J. Lazan, Damping of Materials and Members in
Structural Mechanics, Pergamon Press, London, 1968.
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Tuned mass dampers
• In a machine with a rotating component (e.g., a grinding wheel):

• There is often enough energy at multiples of the rotational
frequency (harmonics) to cause resonant vibrations.

• Some of the machine's components are usually affected.

• A tuned mass damper is simply a mass, spring, and damper attached
to a structure at the point where vibration motion is to be decreased.

• The size of the mass, spring, and damper are chosen so they oscillate
out of phase with the structure.

• They help to reduce the structure's vibration amplitude:

Beam Beam model Beam model with damper

m1

k1 c 1

k 2 c2

m2



© 1994 by Alexander H. Slocum

11-17

17

• The equations of motion of the system are

mx1(t) + c1 + c2  x1(t) - c2x2(t) + ( k1 + k2) x1(t) - k2x2(t) = F(t)

m2x2(t) - c2x1(t) + c2x2(t) - k2x1(t) - k2x2(t) = 0

m1 0
0 m2

 x(t) + c1 + c2 - c2
- c2 c2

 x(t) + 
k1 + k2 - k2

- k2 k2
 x(t)

• In the frequency domain, in order to present a solution for the
motion of the system, the following notation is introduced:

Zij(w) = - w2mij + iwcij + kij          i, j = 1, 2

• The amplitudes of the motions of the component and the damper as
a function of frequency are given by

X1(w) = Z22 (w) F1

Z11(w) Z22(w) - Z12
2 (w)

 

X2(w) = - Z12 (w) F1

Z11(w) Z22(w) - Z12
2 (w)
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• The design of a tuned mass damper system for a machine
component may involve the following steps:

• Determine the space available for the damper and calculate the
mass (m2) that can fit into this space.

• Determine the spring size (k2) that makes the natural frequency
of the damper equal to the natural frequency of the component.

• Use a spreadsheet to generate plots of component amplitude as a
function of frequency and damper damping magnitude (c2).

• Note that tuned mass dampers work well at specific frequencies, but
the structural loop changes with cutting loads.

• Example:  Portion of a spreadsheet for the design of a tuned mass
damper design:
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TMDdes.xls
Tuned mass damper design for a cantilever beam
Written by Alex Slocum.  Last modified 9/3/95 by Alex Slocum
Enter numbers in bold
Cantilever beam characteristics (input)
Modulus (N/m^2) 2.07E+11
Density (Kg/m^3) 7800
Length (m) 0.25
The beam to be damped:
For a circular beam TRUE
Outside Diameter (m) 0.1
Inside Diameter (m) 0.05
For a rectangular beam
Height (m) 0.2
Width (m) 0.5
Max. static deflection (microns) 0.25
Applied dynamic force (N) 25
Beam mass 11.49
Added mass on the end 5
Calculated beam properties
Area  A (m^2) 5.89E-03
Inertia  I 4.60E-06
Est. first natural frequency (rad/s, Hz) 3606 574
Stiffness (N/m, N/micron) 182899597 182.90
Equivelant mass (kg) 14
Static deflection (microns) 0.14
Damping coefficient (for steel) (N/(m/s)) 161.47
Cylindrical damper characteristics (input)
Cylinder diameter (m) 0.035
Cylinder length (m) 0.06
Outer core density 7800
Inner core density 7800
% size of core (IDcore = %OD) 0.75
Damper fluid viscosity (N-sec/m^2) 10
Bore radial clearance (microns) 10
Number of damping cylinders 1
maximum dynamic displacement (µm) 0.511
Calculated damper properties
Damper mass (kg) 0.62
Damper damping (N/(m/s)) 6597
Damper stiffness (N/m) 8048991
Unit spring stiffness (N/m, lbf/in) 4024496 22997
Maximum damper displacement (microns) 0.54
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• Simulated response of the above-modeled damper:
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• Simulated response of an 80-mm diameter, 400-mm-long steel
cantilever beam equipped with a tuned mass damper.
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• Cross section of a tuned mass damper design for an 80-mm
diameter, 400-mm-long steel cantilever beam.

• There are many different tuned mass damper designs:

O rings seal in high
viscosity Newtonian 
fluid

Diaphragm spring

Mass
Shear damper gap

Low cost tuned mass damper
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• The spring and the damper can be combined in a high-loss
elastomer:

Viscolastomer
(high-loss rubber)

TMD mass

Structure

• One can also use a mass on a beam damped with a constrained layer
damper, and even make it adjustable:
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Constrained Layer Dampers
• Damping is achieved by viscoelastic shear.

• Viscoelastic shear dampers work well at all frequencies and can be
analytically modeled.

Z

Y
X

X-Y table

Z axis Viscous material

Structural material

I 1 c 1 E 1, ,

I 2 c 2 E 2, ,

Effective viscosity m

h

Width b (into page)

x

F(t)

• Delamination can occur with time unless surfaces and adhesives are
very carefully prepared.

• Exterior surfaces subject to impact etc. are not viable
candidates.

• Replication can be used to obtain smooth flat surfaces for the
damping mechanism.

• Machine tool structures often have other components mounted to
their surfaces.

• Cast iron (and rough surface) structures require the layers to be
epoxied together.
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Design theory4

• Motion of a structure is greatest far from the neutral axis.

• Consider dynamic stiffness of other parts of the structure.  A
balanced design must be obtained!

• Determine the moments of inertia of the system:

• Structure by itself:  (EIs) about its own respective neutral axis.

• Constraining layers (EIcli) about their own respective neutral axes.

• The system as if the constrained layer had an infinite modulus: (I∞)
about the system nuetral axis.

• The system as if the constrained layer had a zero modulus:
Io = I structure + I c l i∑

i=1

N
 
 about the system nuetral axis.

• The maximum damping that can be obtained with this system (given
the ideal damping material) is:

 

Qmax = 1
h effective for the system

hmax = 

I ∞
I0

 - 1

4

 

+

I I0

constraining 
layer

Structure

∞
                                                
4 This theory was developed by Layton Hale.  It builds upon work done by Eric
Marsh as part of his Ph.D. thesis.
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• Calculate the stiffness ratio:

r = EI∞ - EI0

EI0

• Calculate the optimal damping parameter to maximize dynamic
stiffness:

aoptimal = 1
1 + h2

• Properties of a typical viscoelastic damping material:
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• Calculate optimal damping layer thickness

hoptimal = 
Gdamping material wici

2∑
w=1

N

aoptimalEstructure I∞- I0
Leff

2

• The constraining layer should be attached at the point of zero shear
in the beam.

• The effective length is thus dependent on the beam mounting:

End Condition Zero Shear location Leff

Fixed-free Fixed end 0.613L
Free end 0.314L

0.4L 0.229L
Pinned-Pinned Center 0.318L

Fixed-Fixed Center 0.160L
Free-Free Center 0.314L
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• Calculate the dynamic compliance ratio:

Q = 1 + 2+r a + 1 + r a2 1 + h2

hra
• Often, the damping material is only available in incremental

thicknesses, so calculate a and then calculate Q:

a = 
Gdamping material

wici
2

hi
∑
i=1

N

Estructure I∞- I0
Leff

2

• The stiffness and damping factor of the constrained layer (damping
material) as a function of frequency.

• This theory is a starting point only.  The final design should be
checked using FEA.
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Spreadsheet CLDdes.XLS for the design of constrained
layer dampers
• The primary issue is that the damping material data (modulus in

particular) is frequency dependent.

CLDdes.XLS
To design constrained layer dampers for a rectangular beam with plate CLDs
Written by Alex Slocum.  Theory by Layton Hale.  Last modified 12/19/95 by AS
Only change cells with boldface numbers.

Structural beam
Outside height (m) 0.01
Outside width (m) 0.025
Inside height (m) 0
Inside width (m) 0
Length (m) [L] 0.25
Modulus of elasticity (Pa) E 2.07E+11
Moment of inertia (m^4) 2.08E-09
Cross section area (m^2) 2.50E-04
Distance: structure nuetral axis and I∞ nuetral axis (m) 0.0051
Beam constraints
Cantilever [cant] FALSE
Simply supported [simple] TRUE
Free-free [free] FALSE
Cantilever-simple [other] FALSE
Fundemental mode shape [mode] 0.1013
Viscoelastic damping layer properties
Re(Gv) (Elastic storage shear modulus) Gv 9.00E+05
Loss factor n [eta] 1
Optimal thickness (calculated below) (mm) 0.02
Desired thickness to use (available damping tape thickness) (mm) [htape] 0.125
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Top surface constraining layer (may be 0)
Height (m) 0
Width (m) 0.025
Width constraining layer covers (m) [wt] 0.025
Moment of inertia (m^4) 0.00E+00
Cross section area (m^2) 0.00E+00
Distance: constraining layer and structure's nuetral axes (m) [ct] 0.0051
Distance: constraining layer nuetral axis and I∞ nuetral axis (m) 0.0102
Bottom surface constraining layer (must exist)
Height (m) 0.01
Width (m) 0.025
Width constraining layer covers (m) [wb] 0.025
Moment of inertia (m^4) 2.08E-09
Cross section area (m^2) 2.50E-04
Distance: constraining layer and structure's nuetral axes (m) [cb] 0.0101
Distance: constraining layer nuetral axis and I∞ nuetral axis (m) 0.0051
System cross section properties
Location of I∞ nuetral axis from bottom of bottom constraining layer 0.0101
I∞ (m^4) [Iinfinity] 1.70E-08
Io (m^4) [Io] 4.17E-09
Stiffness factor  r = (I∞/Io-1) [rr] 3.075
Damping calculations
Minimum Q with the viscoelastic material selected & hopt 3.5
Theoretical minimum possible Q 1.3
Q obtained wih the damping tape thickness [htape] available 7.7
Kviscolayer/kconstraining layer = alpha optimal [alphaopt] 0.350
Optimal damping layer thickness (mm) [hopt] 0.02
alpha for given damping tape thickness htape [alpha] 0.055
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How much damping and how much static stiffness?

Qinitial 20
Structure h Damper h Q Kstatic Kdynamic

1.0 0.0 20.00 1.000 0.050
0.9 0.1 7.02 0.730 0.104
0.8 0.2 3.56 0.520 0.146
0.7 0.3 2.10 0.370 0.176
0.6 0.4 1.44 0.280 0.194
0.5 0.5 1.25 0.250 0.200
0.4 0.6 1.44 0.280 0.194
0.3 0.7 2.10 0.370 0.176
0.2 0.8 3.56 0.520 0.146
0.1 0.9 7.02 0.730 0.104

• The error budget should tell you how much static stiffness you need,
then match the static and dynamic stidffness.
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Predicted responses of damped free-free5 beams
For a 25 mm wide, 250 mm long, cold rolled steel beam:

Plain steel
beam

3M
IsoDamp 112

EAR C1002 Soundcoat
GP3

Beam height (mm) 20 10 10 10

Constrained layer
height (mm)

NA .125 1.5 1.5

Constraining layer
height (mm)

NA 10 10 10

Beam or damping
material modulus
(Pa)

E=2.0 x 1011 G=9.0 x 105 G=1.0 x 107 G=2.2 x 107

FEA w1 (Hz) 1678 902 908 971

Measured w1 (Hz)6 1638 902 910 970

FEA Q (includes
material damping)

56 5.9 5.2 3.3

Measured Q 65 6.3 5.1 3.1

CLDdes.XLS
Spreadsheet
predicted Q (does
not include
material damping)

NA 7.8 6.4 4.0

                                                
5 In order to obtain the Q, the free-free case is modeled as a beam supported at its
minimum deflection points (0.225L from the ends) by very soft springs.  This results in
less than a 0.1% difference in natural frequency calculations (1678 Hz vs 1676.6 Hz).
6 The predicted first natural frequency using fundemental theory is 1666 Hz
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Predicted responses of damped simply supported beams
For a 25 mm wide, 250 mm long, cold rolled steel beam:

Plain steel
beam

3M
IsoDamp 112

EAR C1002 Soundcoat
GP3

Beam height (mm) 20 10 10 10

Constrained layer
height (mm)

0 .125 1.5 1.5

Constraining layer
height (mm)

0 10 10 10

Beam or damping
material modulus
(Pa)

E=2.0 x 1011 G=9.0 x 105 G=1.0 x 107 G=2.2 x 107

Material h 0.015 1 1 1

FEA w1 (Hz) 730 331 375 421

ANSYS FEA
SOLID45's
BEATAD = h/2pw
steel/damping

3.27 x 10-6 4.26 x 10-4

6.38 x 10-6

4.24 x 10-4

6.37 x 10-6

3.87 x 10-4

5.81 x 10-6

FEA dstatic (m) 9.8 x 10-8 3.7 x 10-7 3.6 x 10-7 3.0 x 10-7

FEA ddynamic (m) 6.4 x 10-6 2.1 x 10-6 1.8 x 10-6 1.1 x 10-6

FEA Q (includes
material damping)

65 5.7 5.0 3.7

Measured Q 6.3 4.8 3.4

CLDdes.XLS
Spreadsheet
predicted Q (does
not include
material damping)

NA 7.7 6.3 3.9
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Using finite element models to design damped systems
• Now consider the finite element method, which will be required for

analysis of more complex structures.

• A designer should be able to digitally design different structures with
different damping treatments to compare performance.

• Using FEA, you can model a beam as an 8 node solid element
(e.g., SOLID45 element in Ansys™) with 3 DoF per node.

1

2

3

4

6

7

8

• Most machine tool structures can be modeled with these
elements.

• For the beam tested above, going from one 8 node element for the
cross-section to 4 elements, to 16 elements changes the results by
about 3%

• The computed first frequency is 1672 Hz.

• The theory, experiment, and FEA results match very well!
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How can FEA be used to compute the damped vibration
response of a structure?
• Bolted joints can only be modeled as “solid” if the bolt stress cones

overlap!

• “Bulk” machine damping factor, h, can be applied to all structural
elements.

• ANSYS’ SOLIDS45 element, for example, allows you to input a value
for the damping (DAMP = g)

• This is based on a certain amount of damping occurring in
each mode, so it is linked to the stiffness matrix.

• The damping is the Imaginary part of the response, so it is
given by g in the response of a classic second order system:

mx(t) + k 1 + ig x(t) = Akeiwt

• In terms of the modal damping coefficient h (e.g., from the
modal analyses or material property data, remember, f is in
Hz!):

g = h
2pf

Econstrained layer

Estructure

Econstraining layer
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General procedure
• Design the structure for the desired static stiffness

• Deflections due to gravity and axis force loads should be
within budgeted values.

• Use the spreadsheet to design a constrained layer damper.

• Use FEA to determine the dynamic performance of the machine:

• DAMP of the structure’s material set to that of a typical
similar machine (obtained for example from the Log
Decrement).

• Use FEA to determine the dynamic performance of the machine
with the constrained layer damper.

• Use FEA to determine the dynamic performance of the machine
were the constrained layer damper material is removed, and the
constraining layer is added directly to the structure.

• This will determine the most efficient use of added material to the
system.
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• Example:  Bonding a bottom damping plate to a structure (e.g., a
surface plate) allows the weight of the structure to make sure it will
not delaminate:

8" thick top 4'x6' granite

1/4" thick viscoelastomer 
with adhesive on both sides 
to bond to ground granite 
surfaces

2" thick constraining 
granite layer

Weight of table keeps 
constrained layer in 
compression so it cannot 
delaminate with time.

• Example:  A damper plate on the bottom of a machine tool base:

• EIo = 1.7 x 109 N.m2

• I•  = 2.5 x 109 N.m2

• hb = 0.17    Q = 6

• w = 380  Hz

• At 20 oC, properties of the material are G = 12 MPa and h = 1.

• 70% of the ribbed cast iron machine base is in contact with the
damper plate.

• Solve for optimum damper material thickness h to be 2.2 mm.

• If the machine structure is ribbed, you may decrease a bending
more, but miss a local plate mode that may be the dominant error
source.
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Replicated Internal ShearTube™ ShearDampers™7

• An internal constrained layer damper, that will also damp local
surface modes in a structure.

• A ShearTube damper can highly damp a structure without imposing
strict limits on the structure's geometry or materials.

• The ShearTube damper can decrease the amplification at resonance
of a metal beam from 500 to 10.

Vibration amplitude (g's)
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7 Patents pending.  For more information, contact Richard Slocum, Aesop Inc., 200
Forest Trail, Nicholasville, KY 40356-9150 Phone (606) 224 4140, fax (606) 224-8080,
email slocuminky@aol.com
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• A ShearTube™ damper is incorporated into a structure in the
following manner:

1. The structure has rough holes formed in it (casting, drilling, or
welding in a pipe).

• The holes may be any shape, but should maximize the cross-
section perimeter (e.g., a square).

• The neutral axes of the holes must be as far away as possible
from the neutral axis of the structure.

• Ideally, the holes almost fill the structure (e.g., four squares
inside of a large square beam.

2. Modestly smooth-surfaced tubes (0.5 mm Ra) that are 3-5 mm
smaller than the hole are covered with a high loss damping
material (e.g., 3M Scotchdamp™, Soundcoat GP3, or EAR
C1002)

3. The tubes are suspended into the hole, and an epoxy replicant
(e.g., Vibradamp™ from Philadelphia Resins) or grout is injected
(poured) around the tubes.

4. After the epoxy hardens, the component is ready to be used.

5. To achieve precise temperature control of the machine, the
ShearTubes™ are used like heat exchanger tubes to channel
temperature controlled fluid inside the machine.
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• Instead of using multiple shear tubes (not practical for smaller
structures such as CMM beams and tooling :

• A single inner concentric tube can be used, which has been slit
through its neutral axes to within one diameter of each end.

• This can be referred to as a Split Sheartube ™8 which typically has
50% greater damping, and 50% greater static stiffness.

• The minimum dynamic stiffness of the system where the inner
damping tube is slit all the way to one end is 20.3 N/µm.

• On the other hand, the minimum stiffness of the system where the
damping tube is slit only in its center portion is 38.3 N/µm!

                                                
8 ibid.
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• Frequency Response Functions may show that a machine base's first
mode could be damped using a constrained layer damper on the
bottom of the machine.

• Local diaphragm modes could still cause dominant error
motions near the surface where the part is:

• displacement is proportional to acceleration/frequency2

ac
ce

le
ra

tio
n

frequency
200 1000

1

.1

Accelerometer 1

Accelerometer 1

Machine base
1st bending mode

Local diaphragm mode

• A ShearTube damper or filling the base with concrete will also
damp these local diaphragm modes.

• The same effect can occur in columns, which are generally
weight sensitive, so ShearTube dampers are more effective.
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• ShearDampers and Hydroguide water hydrostatic bearings can be used
to greatly increase part finish and accuracy.


