Precision Machine Design

Topic 13

Design of joints and bearing rails

Purpose:

The characteristics of joints between a machine's components are strong functions of the components themselves, and the means by which they are joined. The latter is often thought of as being non-deterministic, but as this lecture illustrates, design and manufacturing methods can make joint design more deterministic.

Outline:

- Bolted joints
- Bearing rail design
- Adhesive joints

"Tis not a lip, or eye, we beauty call, But the joint force and full result of all"

Alexander Pope

Bolted joints

- A necessary evil in most machines.
 - Bolts act as point forces that create localized deformations in the material.
 - The goal in precision bolted joint design is to minimize variation in deformation between the bolts.
 - This is accomplished by carefully designing the geometry of bolt placement and the tightening method used.
- Remember, most of the damping in a machine tool comes from the bolted joints (and sliding bearings):

δ						Q
0.30 -						-10
0.28 -						-11
0.26 -						-12
0.24 -						-13
0.22 -						-14
0.20 -						-16
0.18 -						-17
0.16 -						-20
0.14 -						-22
0.12 -						-26
0.10 -						-31
0.08 -						-39
0.06 -			1			-52
0.04 -						-79
0.02 -	1					-157
		•				
	Cast Bed	Bed +	Bed +	Bed +	Machine	
		Carriage	Spindle	Carriage	Complete	
				Spindle		

Mechanics can be used to model bolted joints

• Many elements in a bolted joint act in series, which as a set acts in parallel with the stiffness of the parts' interface:

• As long as the applied load does not exceed the preload of the joint, the effective stiffness of the bolted joint will be:

• Including the effects of part stiffness (e.g., a bearing rail), the total stiffness of the system is:

• The stiffness of a 45° cone of material under the bolt head is approximately:

$$K_{\text{flange comp.}} = \frac{1}{\int_{0}^{t} \frac{dy}{\pi E_{\text{f}} \left(\left(\frac{D_{\text{H}}}{2} + y \right)^{2} - \frac{D_{\text{C}}^{2}}{4} \right)}} = \frac{\pi E_{\text{f}} D_{\text{C}}}{\log_{e} \frac{(D_{\text{C}} - D_{\text{H}} - 2t) (D_{\text{C}} + D_{\text{H}})}{(D_{\text{C}} + D_{\text{H}} + 2t) (D_{\text{C}} - D_{\text{H}})}$$

• The shear deflection of the flange of thickness t due to the bolt being in tension is found using energy methods:

$$\tau = \frac{F}{2\pi Rt}$$
$$\delta = \frac{\partial U}{\partial F} = \frac{F}{2\pi tG} \int_{R_B}^{2R_B} \frac{dR}{R} = \frac{F \log_e 2}{2\pi tG}$$
$$K_{\text{flange shear}} = \frac{\pi t E_f}{(1+\eta) \log_e 2}$$

• From geometric compatibility with the bolt head, this includes the effect of shear strain in the bolt head.

- Assume that the effective length of thread engagement is equal to D_B .
 - * The shear stiffness of the threaded region in the bed (neglecting the countersunk region) is:

$$K_{\text{bed shear}} = \frac{\pi D_B E_t}{(1+\eta) \log_e 2}$$

- Assume the bolt is threaded in one bolt diameter.
 - The threads start a distance t_{Cb} below the surface to avoid forming a crater lip upon tightening.
 - Then the bolt stiffness is approximately (effective length $= t + DB/2 + t_{cb}$):

$$K_{Bolt} = \frac{\pi E_B D_B^2}{4 \ (D_B \ / \ 2 + t + t_{cb})}$$

• An example of the application of these formulas is given in conjunction with the discussion of bearing rail design.

Shear Resistance of Bolted Joints

- Bolted joints resist shear ONLY by clamping action and friction!
- NEVER rely on a bolt to take a shear load
- UNLESS the bolt is a shoulder bolt!

• Find the center of the bolt pattern, and compute the moments about it, using the products of bolt force, friction, and distance from the center point:

$$F_{\max} = \frac{\sum_{i=1}^{numberofbolts} F_{bolt_i} r \mu}{L}$$

• The amount of force a bolt can generate, given friction in the threads, is determinable from basic physics of the force generated by a wedge¹:

Where:

- Γ is the applied torque
- μ is the coefficient of friction
- r is the pitch radius of the bolt
- p is the lead of the thread (e.g., inches/rev)
- R is the bolt head radius
- α is the thread angle
- β is 2R/p
- To raise a load (tighten a joint), the torque required is:

$$\Gamma_{required} = F_{desired} \left(\left(\frac{2\pi\mu r + p\cos\alpha}{2\pi r\cos\alpha - \mu p} \right) r + R\mu \right)$$

¹ For a REALLY thorough examination of this subject, including off-axis moments created by the applied torque, see A. Slocum <u>Precision Machine Design</u>, published by SME, Dearborn, MI.

• To lower a load F, the torque required is:

$$\Gamma_{required} = F_{desired} \left(\left(\frac{2\pi\mu r - p\cos\alpha}{2\pi r\cos\alpha + \mu p} \right) r + R\mu \right)$$

• The screw will not back-drive when:

$$p < \frac{2\pi r\mu}{\cos\alpha}$$

• The efficiency η is:

$$\eta = \frac{\cos\alpha(\pi\beta\cos\alpha - \mu)}{\pi\beta\cos\alpha(\cos\alpha + \pi\beta\mu)}$$

The torque applied to the bolt creates stresses

- The force that is generated creates tensile and torsional shear stresses.
 - The thread root is a stress concentration area (a factor of 2-3), which is somewhat mitigated when the threads are rolled (as opposed to cut).
- Assuming a thread root diameter \mathbf{r}_{tr} , the stresses are:

$$\sigma_{\text{tensile}} = \frac{F_{\text{Tensile}}}{\pi r_{\text{tr}}^2}$$
$$\tau_{\text{shear}} = \frac{2\Gamma r_{\text{tr}}}{\pi r_{\text{tr}}^4}$$

The equivalent (Von Mises) stress is:

$$\sigma_{\scriptscriptstyle tensile equivelent} = \sqrt{\sigma_{\scriptscriptstyle tensile}^2 + 3 \tau_{\scriptscriptstyle shear}^2}$$

Some heuristic design rules for bolted joints:

- Never use a bolt diameter smaller than 6 mm on a structure: Small bolts are too easily twisted off!
 - Washers are rarely used with socket-head cap screws because stiffness would be reduced by the addition of an interface.
 - The purpose of a washer is to distribute the load on thin sections, or to keep a hex head bolt from chewing the surface as it is tightened!
- Ideally, the bedded portion of the rail should be at least as wide as the cantilevered portion.
- The flange should be at least one to two bolt diameters thick.
 - Make the stress zone cones beneath the bolt heads overlap.
- Make sure that the surfaces have been stoned with precision diamond ground stones just prior to assembly to remove raised lips around holes.

Bolt installation

- Make sure the threads are cleaned and lubricated.
- Incrementally tighten the bolts.
- Consider using vibration to stress relieve the joint.
- To lock a bolt in place, use one or more of the following:
 - Use a thread lubricant-locking agent.
 - A dab of epoxy on the bolt head.
 - A lock washer.
 - A "NylockTM" bolt.
 - Yield tighten the bolt (tighten to the yield point).

Joint interface stiffness:

- Attempts to analytically model the contact between hundreds of have never been successful.
 - There are just too many unknowns.
- The stiffness of a bare joint interface can only be accurately determined by experimental means.
- However, typically, the interface stiffness will be 5 times the bolt system stiffness.
- If more determinism is sought in joint interface stiffness, then an adhesive can be used.
 - Parting can be obtained by having one surface plated and Teflon impregnated.
 - Most mold releases use a wax, and the wax layer may be too compliant.
 - Using an adhesive can lesson damping from a bolted joint!

• Empirical data must often be used to obtain joint stiffness values: joint stiffness of 0.55%C ground steel parts. (After Yoshimura.)

• **Compressive stiffness at lower contact pressures** (after Dolby and Bell).

Heuristic rules for increasing bolted joint stiffness

- Bolts should not be spaced too far apart.
 - The joint pressure should be estimated as the total force provided by all bolts divided by the total joint area.
- The joint stiffness is the product of the stiffness per unit area value obtained from the empirical data and the bolted area.
 - Assume that the bolt force acts over an area of four to five bolt diameters (the area of the Cone of Influence).
- The finer the surface finish and the tighter the preload:
 - The fewer and smaller the gaps between surface asperities on the surfaces, and the higher the stiffness.
- Where compressive stiffness is critical, surfaces should be ground, scraped, or lapped:
 - Surfaces should always be stoned with a precision ground flat stone just prior to assembly. This is critical when mounting linear guides!
 - Bolt holes should also be countersunk to minimize the forming of "crater lips" during hole drilling.
- Vibration annealing can help to seat the asperities.
- Bolting through machined bosses, and then grouting between the bolted regions with an adhesive can save machining costs.
 - This greatly increases joint stiffness, but can decrease the damping.

Design procedure to determine the required preload and bolt size for a joint:

- The stiffness of the joint should be greater than the stiffness of the parts that make up the joint.
- Determine the required joint interface pressure to achieve the required stiffness.
 - Assume that the bolt force acts over an area of four to five bolt diameters (the area of the Cone of Influence).
- The minimum total preload force should be the larger of:
 - The sum of the maximum tensile force on the joint and the required joint preload force or:
 - Four times the maximum tensile force.
- The product of the minimum force and the coefficient of friction for the joint should be:
 - 5-10 times greater than the maximum expected shear force on the joint.
- Space the bolts equal to the part thickness or a portion of the width of the bearing rail.
- On one extreme, size the bolts so the stresses in the bolts are below 25% of yield.
 - Compare this value to the bolt size found from a minimum stiffness criteria (as shown in the example).
- On another extreme, yield tighten the bolts.
- Check the bending, compression, and Poisson expansion of the rail to make sure they are within acceptable limits.
 - Do a wavelength FFT of the straightness to check for errors at a wavelength of the bolt spacing.

Stability of bolted joints

- Common bolted joints may suffer a loss of initial preload with applied cyclic stress.
 - Loss of preload seems to be due to the applied stress causing microslip between the surfaces.
- If the joint cannot be pinned with dowels, one may wish to specify vibration stress relief and re-tightening of bolts.
 - The final tightening can be done while the vibration stress relief process is being done.
- If the joint is to be subject to vibration loads or extreme stability is required:
 - A hardening thread lubricant should be used.
 - A film adhesive can be spread on the joint.
 - After tightening, a large glob of epoxy should be placed on the bolt head and seating surface.

- Ideally, to ensure stability in a machine that may have a high degree of vibration, one could:
 - The bearing rail should be aligned and the bolts incrementally tightened according to a specific pattern:
 - For example, from the inside out to prevent clamping in a bow.
 - The alignment should be checked after each tightening increment.
 - The assembly should be vibration stress relieved.
 - The alignment should be checked and the bolts retightened.
 - The alignment should be checked, and then the assembly vibration stress relieved while the bolts are re-tightened.
 - A final checking of the alignment should be performed.
 - Ideally, the rail would be pinned to the structure with dowels.
 - It can also be potted in place with an epoxy which helps increase joint stability and damping.
 - A loose fitting key that runs the length of the rail can be grouted or epoxied in place.

Bearing rail design

- Deterministic design is possible if the following are considered:
 - Bolted joint stiffness.
 - Bearing rail stiffness:

Bearing rail stiffness

- The rail is not as stiff as if it were ideally cantilevered, but it is stiffer than a simply supported beam.
 - A simply supported model should be conservative.
- The bolts do not provide knife edge support, thus the stiffness will be less than modeled.
- When a bearing pad exerts a force on the bearing rail, neighboring sections provide support also.
- The surface to which the rail is bolted only supports the rail at the rear point.
 - It actually provides some support due to the bowing of the rail.
 - Assume the rear support point is infinitely stiff and the surface beneath the rail doesn't resist bowing of the rail.
- Bending and shear deformations must be considered.
- For sliding contact bearings, force is applied at the center of the pad.
- For hydrostatic bearings, the deflection must be computed based on the pressure distribution.

Sliding contact bearing rail model:

• The system behaves like a beam attached to a pivot point so the equivalent stiffness at the point of force application is:

$$K_{eq \text{ bolt system}} = \frac{Ka^2}{(a+b)^2}$$

$$K_{eq. bolt system} = CD_B$$

• The bending deflection is:

$$\delta_{\text{bend}} = F \frac{(a+b) b^2}{3EI}$$

• The shear deflection is:

$$\delta_{\text{shear}} = \frac{\text{Fbh}^2 (a + b) (1 + \eta)}{5a\text{EI}}$$

• Assume that the bolt spacing ℓ is a function of the diameter:

$$\ell = D_B(M - 1)$$

- This represents M bolt diameters minus the region occupied by the bolt.
- The moment of inertia for the rail section is then $I = \ell h^3/12$.

• The total stiffness for N segments of the rail (e.g., N segments under a bearing pad) is thus:

- Bolt diameter is not a sensitive parameter for stiffness when bolt spacing is made a function of the bolt diameter
 - The length of bolt and the cone are expressed as bolt lengths:
 - Bolt joint stiffness becomes linearly dependent on the bolt diameter.

- The interesting parameters are:
 - The ratio of joint interface stiffness to joint stiffness.
 - The total length of rail over which one wants to know the stiffness.
- Ideally, for a balanced design, the interface stiffness should be equal to the bolt and rail stiffness.
- If the interface stiffness is too high:
 - The displacement caused by the preload will be very small.
 - Manufacturing defects may cause loss of preload around a bolt.
- Realistically, the interface stiffness may be set to as high as five times the bolt system stiffness.

• For example, these two bolted systems have the same stiffness:

- The design goal is to achieve high stiffness and minimize manufacturing cost, while maintaining accuracy.
- For maximum accuracy, it is desirable for the cones of influence under the bolt heads to overlap.
 - This minimizes bending of the rail on an elastic foundation as described below.
- Thus even though a thicker flange has slightly lower stiffness, it allows for the use of less bolts.
 - For example, with a flange thickness of $2D_B$, the bolt spacing should not be more than $4D_B$

• Lateral deformations due to the Poisson effect should also be prevented, particularly if the rail is also a guide rail:

- These effects are minimized by:
 - Maximizing the ratio of rail width to bolt diameter.
 - Minimizing the bolt spacing.
 - Minimizing the bolt torque.
- Poisson expansion is a leading cause of rotary bearing failure, when bolted flanges are used to preload bearing assemblies.

- Use more small bolts to minimize deformation.
- Remember St. Venant's principle: 3 characteristic dimensions (bolt head diameters) away, effects are no longer felt!

- In some cases, where joint loosening would be disastrous (e.g., in spindle components), yield tightening may be employed.
 - Yield tightened joints can use a torque limit or a displacement limit.
 - Torque limits (with a wrench) can vary due to friction changes.
 - Displacement criteria can be more deterministic (tighten until a fixed torque, and then apply 1/Nth of a turn).
- Be careful to measure the straightness of the system:
 - Do an FFT (straightness error vs. wavelength) and see if there is a peak at the bolt stiffness.
 - If there is a peak, then the bolts are too tight.

Example: Spreadsheet for bolt joint torque

Bolted	l rail	des	ign	
Enter	numb	ers	in	bold

	Meters and Newtons	Inches and pounds		
DB	0.016	0.016	0.62992	0.62992
Flange thickness (bolt diameters)	2	2	2	2
Bolt area	0.000201	0.000201	0.311645	0.311645
45 degree cone area	0.003016	0.003016	4.674681	4.674681
lead	0.002	0.002	0.08	0.08
Thread angle (deg)	14.5	14.5	14.5	14.5
mu	0.1	0.3	0.1	0.3
efficiency (Equation 10.8.18)	0.28	0.11	0.29	0.12
Kdesired	5.26E+08	5.26E+08	3.00E+06	3.00E+06
Kdesired/area	1.74E+11	1.74E+11	6.42E+05	6.42E+05
Joint pressure (use cell B13 & Fig. 7.5.7)	4.00E+04	4.00E+04	6	6
Joint pressure (Use cell D13 & Fig. 7.5.9)	1.38E+05	1.38E+05	20	20
Force required (Ground on scraped cast iron)	416	416	93	93
4*Alternating force on carriage	20000	20000	4494	4494
Number of bolts under carriage	8	8	8	8
Total force per bolt	2916	2916	655	655
Torque required	6.9	18.8	61.1	166.5
Polar inetria	6.43E-09	6.43E-09	1.55E-02	1.55E-02
Shear stress	8.52E+06	2.33E+07	1245	3392
Tensile stress	1.45E+07	1.45E+07	2103	2103
Mises equivelant stress	2.07E+07	4.29E+07	3012	6241

13-26

Rail deformation due to bolt preload

- Even when a "perfect" rail is bolted to a "perfect" bed:
 - Significant (micron to submicron depending on bolt and rail size and preload) deformations can result.
- Bolt preload causes various types of deformation:
 - Bending.
 - Compression.
 - Poisson expansion.

- These errors can be corrected by lapping after bolting.
- The use of a large number of bolts can be used to deform a machine into a desired shape (e.g., to straighten an axis).
- If the rails were finished while bolted and then transferred to another machine:
 - Desirable to be able to determine the deformation that could result from a variation in the bolt force.

- Model of rail deformation due to bolt preload:
 - When the counterbore diameter is much less than the rail width:
 - The model of a guided beam on an elastic foundation of modulus k is used.
 - When the counterbore diameter is a significant portion of rail width:
 - The simply supported beam model on the right is used.

• Analysis methods exist (see text) for estimating the amount of deformation.

- For the previous bolted rail spreadsheet example, the rail deformation is about 0.15 μm (6 μin.).
- Recall the Poisson effect:
 - Compressive deformation is accompanied by a lateral expansion:
 - On the order of 0.3 times the compressive deformation (for most metals), depending on the rail geometry.
- For large rails, the Poisson expansion is usually negligible because it is diffused into the surrounding metal.
- For thin rails, such as those used by many types of modular linear bearings, the effect can be more prominent.
 - Manufacturers' bolt-tightening recommendations should be carefully followed.
 - Beware of mounting to surfaces made from materials with a low modulus of elasticity.
 - Remember, a Fourier transform of the straightness as a function of wavelength can help spot bolting problems!

Bulge (exaggerated) caused by overtightened bolt

- Bolt torques and thread efficiencies are never exactly the same.
 - Varying vertical and horizontal straightness errors in the rail will often be present.
 - The period will often be equal to that of the bolt spacing.
 - Always do a Fourier transform of the straightness error.
 - Plot the results as error amplitude verses wavelength.
- When designing and manufacturing a precision machine:
 - Bolt preload, thread friction, and tightening methods should all be chosen with care.

Modular "T" slide bearing configuration:

Bolt torque summary:

- The theory will often yield a recommended torque level which is far below the allowable torque for a particular bolt:
 - The theory represents the minimum required torque.
 - The higher the torque, the better as far as machine stability is concerned.
 - Too high torques can deform components (e.g., cause rail straightness errors).
- It is best to experiment:
 - See what the component deformations are at different torque levels.
 - Use as high a torque level as possible.
 - Do not forget to stone surfaces before they are bolted together, in order to ensure that there are no burrs.

Bonded joints:

- Bonded joints can be strong and fatigue resistant.
- Adhesives fill small voids between mating parts and thus increase the following characteristics of the joint (Courtesy of Loctite Corp.):
 - Strength
 - Stiffness
 - Damping (>welded, <bolted)
 - Heat transfer

Void	
Contact	Adhesive

- Even when two ground surfaces are to be bolted together:
 - It can be wise to specify the use of a few drops of low viscosity adhesive that will flow and fill the small voids.
 - Sometimes used on very high precision instruments and tools
 - Not used on machine tools
- A sliding fit joint held by an adhesive can make a joint more robust than a press fit joint:
 - More dimensionally stable.
 - More accurate.
 - Longer lasting.
- Bearing races can also be fixed to bores in this manner to avoid altering the preload by press fitting.

- A potted (grouted) joint uses adhesive (low shrinkage epoxy²) to lock in place a joint.
- Mechanical means hold parts in alignment and support the static weight of the structure.
- In some cases:
 - The mechanical means are often there just for initial alignment.
 - Kinematic couplings can be used.
 - The grouting carries large applied loads.
 - Allows for kinematic assembly for easy adjustment and then potting for added rigidity.
- In other cases:
 - The mechanical joint supports the static load.
 - The potting compound resists microslip of the mechanical joint and greatly increases joint stiffness and damping.

² Low shrinkage potting epoxies are available from 1) Andrew Devitt, Devitt Machinery Co., Twin Oaks Center, Suite G, 4009 Market Street, Aston, PA 19014, (610) 494-2900; 2) Loren Power, ITW Philadelphia Resins, 10132 Spiritknoll Ln., Cincinnati, OH 45252-1937, (513) 385-4577

- Examples include:
 - Grouting machine tool beds to concrete floors.
 - Potting major machine tool components to the machine tool structure.
 - Potting sensors in sensor mounts.
- Replication: a polymer is poured or injected around a master shape that has been coated with mold release.
- When the polymer cures, it has the shape of the master which can then be removed and used again.
- Polymer shrinkage is very low (typically 0.25%) shrinkage, BUT it can be significant: Example:
 - 1 meter tall column 0.5 m wide at the base.
 - Wedge of polymer 2 mm thick at one side and 3 mm thick at the other side, and 0.25% shrinkage.
 - Differential shrinkage across the wedge will be 0.001m x 0.0025 = 2.5 microns.
 - Abbe error at the top of the column will be 5 microns!

- Hardening of many polymer resins is an exothermic reaction.
 - Minimize the amount of polymer used.
 - Maximize the stiffness and thermal diffusivity of the master and the part.
- This is required to prevent:
 - The heat of polymerization from heating the structure and deforming it.
 - Then the polymer hardening to the thermally deformed shape.
- Unlike bolted assemblies, once the polymer cures to form the desired shape realignment is no longer possible.
- Replicated parts and assemblies can be as dimensionally stable as the rest of the machine.
- In machine tools, mounting surfaces for linear bearing rails can be replicated.
- In some cases for sliding or hydrostatic bearings the replicated surface functions as the way surface.