Today

- Defocus
- Deconvolution / inverse filters

Defocus

© 20th Century Fox

Intensity distribution near the focus of an ideal lens

(rotationally symmetric wrt z axis)

Back to the basics: 4F system

4F system with defocused input

4F system with defocused input

4F system with defocused input $x'' \uparrow x'$

4F system with defocused input

Depth of field

Depth of field

Depth of field

Depth of field & Depth of focus

NA trade – offs

- high NA
 - narrow PSF in the lateral direction (PSF width $\sim 1/NA$)
 - sharp lateral features
 - narrow PSF in longitudinal direction (PSF depth $\sim 1/NA^2$)
 - poor depth of field
- low NA
 - broad PSF in the lateral direction (PSF width $\sim 1/NA$)
 - blurred lateral features
 - broad PSF in longitudinal direction (PSF depth $\sim 1/NA^2$)
 - good depth of field

Depth of focus: Geometrical Optics viewpoint

Defocus and Deconvolution (Inverse filters)

portion of object defocused by Δz

... is equivalent to same portion *in-focus* PLUS ...

... fictitious quadratic phase mask on the Fourier plane

$$\exp\left\{-i2\pi \frac{\left(x''^{2}+y''^{2}\right)\Delta z}{\lambda f_{1}^{2}}\right\} \quad (applied \ \textit{locally})$$

Example

focal plane

Raw image (collected by camera – noise-free)

Distance between planes \approx 2 Depths of Field left-most "M" : image blurred by diffraction only center and right-most "M"s : image blurred by diffraction and defocus

Raw image explanation: *convolution*

Raw image explanation: *Fourier domain*

Can diffraction and defocus be "undone" ?

• Effect of optical system (expressed in the Fourier plane):

$$\mathfrak{I}{"M"} \times H_{system}$$
 where $H_{system} = H_{diffraction} \times H_{defocus}$

• To undo the optical effect, multiply by the "inverse transfer function"

$$(\Im\{"M"\} \times H_{system}) \times \frac{1}{H_{system}} = \Im\{"M"\} !!!$$

Can diffraction and defocus be "undone" ?

• Effect of optical system (expressed in the Fourier domain):

$$\Im \{ "M" \} \times H_{system}$$
 where $H_{system} = H_{diffraction} \times H_{defocus}$

• To undo the optical effect, multiply by the "inverse transfer function"

$$(\mathfrak{I}{"M"} \times H_{system}) \times \frac{1}{H_{system}} = \mathfrak{I}{"M"} !!!$$

- Problems
 - Transfer function goes to zero outsize the system pass-band
 - Inverse transfer function will multiply the FT of the noise as well as the FT of the original signal

Solution: Tikhonov regularization

On Tikhonov regularization

$$\mathfrak{I}_{\text{image}}^{\text{final}} = \left(\mathfrak{I}_{\text{object}}^{\text{original}} \times H_{\text{system}}\right) \times \frac{H_{\text{system}}^{*}}{\mu + |H_{\text{system}}|^{2}}$$

- μ is the "regularizer" or "regularization parameter"
- choice of μ : depends on the noise and signal energy
- for Gaussian noise *and* image statistics, optimum μ is

$$\mu_{\text{optimum}} = \frac{1}{\text{SNR}_{\text{power}}}$$

"Wiener filter"

- More generally, the optimal inverse filters are nonlinear and/or probabilistic (e.g. maximum likelihood inversion)
- For more details: 2.717

Deconvolution: diffraction *and* **defocus**

noise free

Deconvolution using Tikhonov regularized inverse filter Utilized *a priori* knowledge of depth of each digit (alternatively, needs depth-from defocus algorithm)

Artifacts due primarily to numerical errors getting amplified by the inverse filter (despite regularization)

Noisy raw image

<u>SNR=10</u>

Deconvolution in the presence of noise

<u>SNR=10</u>

Deconvolution using Wiener filter (i.e. Tikhonov with μ =1/SNR) Noise is destructive away from focus (4DOFs) Utilized *a priori* knowledge of depth of each digit

Artifacts due primarily to noise getting amplified by the inverse filter