2.710 Optics Fall '05

Problem Set #5 Posted Wednesday, Oct. 19, 2005 — Due Wednesday, Oct. 26, 2005

1. Frequencies and wavelengths

- **1.a)** MIT's WMBR radio station transmits at frequency 88.1MHz. What is WMBR's wavelength in air?
- **1.b)** Microwave antennas, especially those of radio stations, are often of the " $\lambda/2$ " type, i.e. the height of the antenna equals one half of the wavelength. If an antenna is 10m tall, what is the frequency that it is transmitting?
- **1.c)** An obsessive flutist keeps playing the A tone (440Hz) on WMBR. What is the wavelength of that sound?
- 1.d) Soft x-rays have a wavelength of 1nm. What is the frequency?
- 1.e) According to quantum mechanics, particles can also be thought of as waves. The "dispersion relation" for these waves, is different than that for light waves that we saw in class; instead, particles obey the "de Broglie" dispersion relationship, which is

$$\lambda = \frac{h}{mv},$$

where λ is the wavelength associated with the particle, m is the particle's rest mass, v is the (non-relativistic) velocity, and h is Planck's constant. Based on this equation, what is the electron's wavelength?

1.f) Water waves also obey a different dispersion relation, given by

$$\omega^2 = gk \tanh(kd),$$

where, as usual, $\omega = 2\pi\nu$, $k = 2\pi/\lambda$; g is the acceleration of gravity, and d is the depth of the water. If the depth of a pool is 3m, and the wavelength is 10cm, what is the frequency of the water waves?

- 2. Plane waves and phasor representations Throughout this problem, by "complete expression" of a wave we mean the space-time representation, e.g. $f(x, y, z, t) = A\cos(kx \omega t)$ is a plane wave of wave-vector magnitude k and frequency ω propagating in the direction of the \hat{x} coordinate axis. By "phasor expression" we mean the complex representation of the wave, e.g. Ae^{ikx} for the same wave.
 - **2.a)** Write the complete and phasor expressions for a plane wave $f_1(x, y, z, t)$ propagating at an angle 30° relative to the \hat{z} axis on the xz-plane (i.e., the plane y = 0). The wavelength is $\lambda = 1\mu m$, and the wave speed is $c = 3 \times 10^8 \text{m} \cdot \text{sec}^{-1}$.

- **2.b)** Write the complete and phasor expressions for a plane wave $f_2(x, y, z, t)$ of the same wavelength and wave speed as f_1 but propagating at angle 60° relative to the \hat{z} axis on the yz-plane.
- **2.c)** Use the complete expression to plot $f_1(x, y, z = 0, t = 0)$ and $f_2(x, y, z = 0, t = 0)$ using MATLAB. (*Note:* you will probably need to use **surf** or an equivalent command.)
- **2.d)** The plane z = 0 is illuminated by the superposition of the two waves f_1 and f_2 . Plot the waveform received at points A, B, C, D, E with Cartesian coordinates, respectively,

$$(0,0,0), \left(\frac{1}{4}, -\frac{1}{4\sqrt{3}}, 0\right), \left(\frac{1}{2}, -\frac{1}{2\sqrt{3}}, 0\right), \left(\frac{3}{4}, -\frac{3}{4\sqrt{3}}, 0\right), \left(1, -\frac{1}{2\sqrt{3}}, 0\right)$$

(all units in microns) as function of time. What do you observe?

3. Superposition of scalar waves Given two waves

$$E_1(z,t) = E_0 \cos(k_1 z - \omega_1 t),$$

 $E_2(z,t) = E_0 \cos(k_2 z - \omega_2 t),$

where $\omega_1 = 100 \text{Hz}$, $\omega_2 = 101 \text{Hz}$ and the wavenumbers k_1 , k_2 obey the usual dispersion relation for light waves.

- **3.a)** Show that the superposition can be expressed as a product of two tones, one at frequency lower than both the waves, and one at higher frequency.
- **3.b)** Plot your result. What do you observe?
- 4. Superposition of polarized waves Given two waves

$$\mathbf{E}_1(z,t) = \hat{\mathbf{x}} E_0 \cos(kz - \omega t),$$

$$\mathbf{E}_2(z,t) = \hat{\mathbf{y}} E_0 \cos(kz - \omega t),$$

where E_0 is a constant electric field magnitude, and k, ω are the wavenumber and angular frequency of the waves.

- **4.a)** What is the superposition of the two waves E_1 , E_2 ? What is the type of its polarization?
- **4.b)** Now suppose the second wave E_2 is delayed by $\pi/2$. What is the polarization of the superposition wave?
- **4.c)** Now suppose that, in addition, the second wave \mathbf{E}_2 is attenuated to $0.717E_0$. If you were to trace the tip of the superposition electric field vector, as in slide #21 of lecture 7-a, what would the locus inscribed by the tip look like?