Axial imaging necessitates loss of lateral
shift invariance
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Abstract: We conjecture that the lateral shift invariance of an imag-
ing system must be limited if axial imaging capability is desired. We
develop shift invariance and depth resolution metrics and demonstrate
the trade-off in simple representative systems.
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Known imaging systems capable of resolving object structure along the axial di-
mension (e.g. confocal microscopes, interferometers, binocular vision systems) usually
exhibit limited shift invariance; i.e., they possess a location-dependent impulse response.
For example, the confocal microscope [1], shown in Figure 1, achieves optical section-
ing via two means: (1) active illumination is focused on a specific object point, and
(2) a pinhole placed at the detector plane rejects all out-of-focus light coming from the
object. Clearly, both features severely limit the shift invariance of the system. If the
pinhole is gradually opened up from its ideal zero diameter, the amount of lateral im-
age information allowed through proportionally increases, whereas the depth-resolving
capability decreases. In the limit of the pinhole becoming as wide as the field of view,
axial imaging capability is essentially eliminated.

We conjecture that axial imaging and depth resolution are coupled in any imag-
ing system. Thus, by measuring the amount of shift invariance one should be able to
estimate the depth resolution of an imaging system. Perhaps more interesting is the
possibility of trading shift invariance off for depth resolution when designing an imag-
ing instrument. Among optical elements, volume holograms provide the capability of
“tuning” the shift invariance at will. For example, this property has been studied in the
context of holographic correlators for optical pattern recognition [2]. Recently, it was
shown that a volume holographic matched filter can replace the pinhole of a confocal
microscope to provide depth selectivity [3]. Here, we are interested in quantifying the
shift invariance vs. depth resolution trade-off for general optical systems. For this pur-
pose, we define metrics S and Az of shift invariance and axial resolution, respectively,
such that they can be applied to general imaging systems. We then apply the definitions
to a diffraction-limited confocal microscope, and show that shift invariance and depth
resolution exhibit opposite trends as the pinhole radius of the system increases.

The axial, longitudinal, or depth direction Z (we use all three terms interchange-
ably) with respect to an imaging system as the direction of an optical axis, if one
is defined. If more than one axes can be identified in the system (e.g., in the case
of multiple cameras), then we define the “effective axial” direction Z as any normal-
ized convex sum of the axes of the system. For example, in the binocular arrangement
of Figure 2 with two optical axes Z; and Zs, the effective axis may be selected as
Z = [0z + (1 —a)z,]/{e? + (1 —a)*}/2 for any a € [0,1]. The choice o = 0.5 is
perhaps the most natural, but a different choice may be better suited for a specific
application. We will ignore pathological situations, e.g. two cameras facing in opposite
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Fig. 1. Confocal microscope. Fig. 2. Binocular imaging.

directions (Z; = —Z, in Fig. 2). Once Z has been defined, the lateral coordinates X, § are

selected freely provided that (X,¥,%) form an orthonormal triad. We also assume that
the image data are acquired by a detector (or combination of detectors, as in Fig. 2) and
denote by (z',y’) the coordinates at the detector plane. In multi-camera systems, such
as the binocular one of Figure 2, the detector spaces would have to be “concatenated”
into a single plane.

Let h(x,y;x',y") denote the lateral intensity impulse response of an arbitrary imaging
system at a fixed depth zo. We define the function

S(z,y) = JIT by, y') = 0 (0,052 -,y — y)]” da'dy’
| SIS h2(0,0;0" — @,y — y) da'dy’ '

(1)

The shift invariance metric is then defined as the distance Ar from the origin required
for S to reach 90% of its peak value, as shown in Figure 3. It is easy to see that Ar
tends to infinity for a perfectly shift-invariant system. On the other hand, consider an
infinitessimally small pinhole in the geometrical optics approximation. Such a system
exhibits severe shift variance; consistently, its metric Ar approaches the value 0. For
finite pinhole size and diffraction-limited imaging, Ar takes intermediate values, as we
show later. Using the above definitions, it is straightforward to compute Ar for other
systems such the binocular one of Figure 2. Most interferometers would have very small
Ar values because of the ambiguity resulting from repeating fringes.

A simple way to measure axial imaging capability is the use of the uncertainty Az
in determining the axial location of a point source around the reference depth zp. This
may depend on several factors, primarily detection noise but also image quantization
(e.g., in the case of a binocular system) etc. Both metrics Ar and Az generally depend
on zp; complete analysis of this phenomenon is beyond the scope of this paper, however.

Consider again the confocal microscope system of Figure 1, equipped with a scanning
mechanism which allows it to acquire 3D data. This system is exceptional in that the
shift variance and resolution do not depend on the depth zp; this is because the system
has a focal plane and the image data are acquired one point at a time. This property
simplifies the understanding of the trade-offs that we want to discuss here.

The shift invariance data in Figure 4 were generated from (1) using the in-focus
lateral intensity impulse response of a lens, squared (to account for confocal illumination)
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Fig. 3. How to compute Ar. Fig. 4. Shift invariance and depth resolution.
and multiplied by the pinhole mask (radius d) as
2
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The depth resolution data of Figure 4 were generated using the integrated intensity
derivation of [4, sec. 8.8.3]. The resolution Az was defined as the full width at half
maximum (FWHM) point. This is slightly pessimistic because it does not account for
the improved signal-to-noise ratio at large pinhole diameters. With this caveat, the
loss of shift invariance as depth selectivity improves is apparent from Figure 4. The
horizontal axis variable in both plots is the normalized pinhole radius v = 27d/A(NA).

The competition among shift invariance and depth resolution is clear from the data of
Figure 4. Tt is also evident in many imaging systems that evolved in Nature. For example,
humans can tolerate limited depth selectivity in favor of relatively large domain of shift
invariance. This is because humans’ cognitive capabilities can compensate depth and
shape perception from other cues, such as object size, shading, texture and general
knowlegde. We believe that similar exchanges can be applied to the design of artificial
“smart” imaging systems which trade aspects of their image quality to maximize overall
performance in cognitive tasks.
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