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Abstract: We conjecture that the lateral shift invariance of an imag-

ing system must be limited if axial imaging capability is desired. We

develop shift invariance and depth resolution metrics and demonstrate

the trade-o� in simple representative systems.
c
 2001 Optical Society of America

OCIS codes: (110.2990) Image formation theory; (110.6880) Three-dimensional

image acquisition

Known imaging systems capable of resolving object structure along the axial di-

mension (e.g. confocal microscopes, interferometers, binocular vision systems) usually

exhibit limited shift invariance; i.e., they possess a location-dependent impulse response.

For example, the confocal microscope [1], shown in Figure 1, achieves optical section-

ing via two means: (1) active illumination is focused on a speci�c object point, and

(2) a pinhole placed at the detector plane rejects all out-of-focus light coming from the

object. Clearly, both features severely limit the shift invariance of the system. If the

pinhole is gradually opened up from its ideal zero diameter, the amount of lateral im-

age information allowed through proportionally increases, whereas the depth-resolving

capability decreases. In the limit of the pinhole becoming as wide as the �eld of view,

axial imaging capability is essentially eliminated.

We conjecture that axial imaging and depth resolution are coupled in any imag-

ing system. Thus, by measuring the amount of shift invariance one should be able to

estimate the depth resolution of an imaging system. Perhaps more interesting is the

possibility of trading shift invariance o� for depth resolution when designing an imag-

ing instrument. Among optical elements, volume holograms provide the capability of

\tuning" the shift invariance at will. For example, this property has been studied in the

context of holographic correlators for optical pattern recognition [2]. Recently, it was

shown that a volume holographic matched �lter can replace the pinhole of a confocal

microscope to provide depth selectivity [3]. Here, we are interested in quantifying the

shift invariance vs. depth resolution trade-o� for general optical systems. For this pur-

pose, we de�ne metrics S and �z of shift invariance and axial resolution, respectively,

such that they can be applied to general imaging systems. We then apply the de�nitions

to a di�raction-limited confocal microscope, and show that shift invariance and depth

resolution exhibit opposite trends as the pinhole radius of the system increases.

The axial, longitudinal, or depth direction ẑ (we use all three terms interchange-

ably) with respect to an imaging system as the direction of an optical axis, if one

is de�ned. If more than one axes can be identi�ed in the system (e.g., in the case

of multiple cameras), then we de�ne the \e�ective axial" direction ẑ as any normal-

ized convex sum of the axes of the system. For example, in the binocular arrangement

of Figure 2 with two optical axes ẑ1 and ẑ2, the e�ective axis may be selected as

ẑ = [�ẑ1 + (1� �) ẑ2] =f�
2 + (1� �)

2
g
1=2 for any � 2 [0; 1]. The choice � = 0:5 is

perhaps the most natural, but a di�erent choice may be better suited for a speci�c

application. We will ignore pathological situations, e.g. two cameras facing in opposite
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Fig. 1. Confocal microscope.
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Fig. 2. Binocular imaging.

directions (ẑ1 = �ẑ2 in Fig. 2). Once ẑ has been de�ned, the lateral coordinates x̂, ŷ are

selected freely provided that (x̂; ŷ; ẑ) form an orthonormal triad. We also assume that

the image data are acquired by a detector (or combination of detectors, as in Fig. 2) and

denote by (x0; y0) the coordinates at the detector plane. In multi-camera systems, such

as the binocular one of Figure 2, the detector spaces would have to be \concatenated"

into a single plane.

Let h(x; y;x0; y0) denote the lateral intensity impulse response of an arbitrary imaging

system at a �xed depth z0. We de�ne the function

S(x; y) =

RR +1
�1

[h (x; y;x0; y0)� h (0; 0;x0 � x; y0 � y)]
2
dx0dy0RR +1

�1
h2 (0; 0;x0 � x; y0 � y) dx0dy0

: (1)

The shift invariance metric is then de�ned as the distance �r from the origin required

for S to reach 90% of its peak value, as shown in Figure 3. It is easy to see that �r
tends to in�nity for a perfectly shift-invariant system. On the other hand, consider an

in�nitessimally small pinhole in the geometrical optics approximation. Such a system

exhibits severe shift variance; consistently, its metric �r approaches the value 0. For

�nite pinhole size and di�raction-limited imaging, �r takes intermediate values, as we

show later. Using the above de�nitions, it is straightforward to compute �r for other

systems such the binocular one of Figure 2. Most interferometers would have very small

�r values because of the ambiguity resulting from repeating fringes.

A simple way to measure axial imaging capability is the use of the uncertainty �z
in determining the axial location of a point source around the reference depth z0. This
may depend on several factors, primarily detection noise but also image quantization

(e.g., in the case of a binocular system) etc. Both metrics �r and �z generally depend

on z0; complete analysis of this phenomenon is beyond the scope of this paper, however.

Consider again the confocal microscope system of Figure 1, equipped with a scanning

mechanism which allows it to acquire 3D data. This system is exceptional in that the

shift variance and resolution do not depend on the depth z0; this is because the system
has a focal plane and the image data are acquired one point at a time. This property

simpli�es the understanding of the trade-o�s that we want to discuss here.

The shift invariance data in Figure 4 were generated from (1) using the in-focus

lateral intensity impulse response of a lens, squared (to account for confocal illumination)
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Fig. 3. How to compute �r.
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Fig. 4. Shift invariance and depth resolution.

and multiplied by the pinhole mask (radius d) as

h(x; y;x0; y0) =

2
664
2 J1

�
2�

�(NA)

p
(x � x0)2 + (y � y0)2

�
�

2�

�(NA)

p
(x� x0)2 + (y � y0)2

�
3
775
2

circ

 p
(x0)2 + (y0)2

d

!
: (2)

The depth resolution data of Figure 4 were generated using the integrated intensity

derivation of [4, sec. 8.8.3]. The resolution �z was de�ned as the full width at half

maximum (FWHM) point. This is slightly pessimistic because it does not account for

the improved signal-to-noise ratio at large pinhole diameters. With this caveat, the

loss of shift invariance as depth selectivity improves is apparent from Figure 4. The

horizontal axis variable in both plots is the normalized pinhole radius v = 2�d=�(NA).
The competition among shift invariance and depth resolution is clear from the data of

Figure 4. It is also evident in many imaging systems that evolved in Nature. For example,

humans can tolerate limited depth selectivity in favor of relatively large domain of shift

invariance. This is because humans' cognitive capabilities can compensate depth and

shape perception from other cues, such as object size, shading, texture and general

knowlegde. We believe that similar exchanges can be applied to the design of arti�cial

\smart" imaging systems which trade aspects of their image quality to maximize overall

performance in cognitive tasks.
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