

2.810 Manufacturing Processes and Systems

Prof. Tim Gutowski, gutowski@mit.edu September 4, 2019

Prereq: 2.001, 2.006, 2.008 (translation: solid & fluid mech, heat transfer, mfg)

Today's Agenda

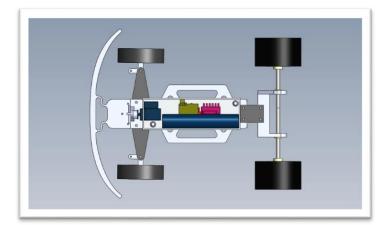
Business

- Administrative stuff
- Your background
- Concepts
 - Manufacturing Enterprise Big Picture
 - Processes
 - Systems

Basic info can be found on the 2.810 webpage

web page:	http://web.mit.edu/2.810/	<i>WWW</i>	
Instructor:	Prof. T. G. Gutowski gutowski@mit.edu	Rm. 35-234	
Т.А.:	John Lewandowski dowski@MIT.EDU	Rm 35- 135	
Tech Inst:	Mr. Paul Carson pcarson@mit.edu	Rm. 35-112	
Text:	Manufacturing Engineeri Kalpakjian and Schmid, 2	•	

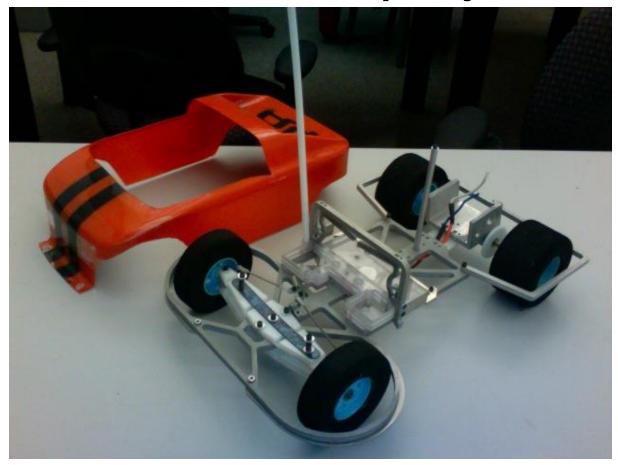
Paul Carson & the Bldg 35 Shop





Hands-on Experience

Processes to Systems



2.810 Schedule

Sept.	Mond	ays 1:	:00 - 2:30	Wednesdays 4	1:00 - 2:30 Introduction
	9	How is th	nis part made?	12	Intro to Processes
	16	Process P	erformance	18	Removal Processes
	23	Casting F	rocesses	25	Additive Processes
	30	Sheet Pro	ocesses		
Oct.					
				2	Process Summary
	7	Car/Quiz	z Review**	9	QUIZ I
	14	No Class	(Columbus Day)	16	Intro to Mfg. Systems
	21	Additive	Mfg. (John Hart)	23	TPS & Current Practices (J. Pacheco)
	28	Process C	Control (Dave Hardt)	30	Time & Variability (Gershwin)
Nov.					
	4	System T	ools	6	Progress Reports
	11	No Class	(Veterans Day)	13	Sustainable Manufacturing
	18	Systems	Review	20	QUIZ II
	25	Digital M	lfg. (Brian Anthony)	27	Work on Projects
Dec.					
	2	Work on	Projects	4	Work on Projects
	9	Contest ((Lobby 13)	11	Reports & Evaluations

* https://www.youtube.com/watch?v=ICjQ0UzE2Ao

2.810 team project

2.810 Labs (see signup)

Labs 9-12 M, T, R, F; Building 35 shop

Week of September 9Safety, Shop Orientation, Car ReviewWeek of September 16Machining /Flashlight ProjectWeek of September 23Machining /Flashlight ProjectWeek of September 30Machining /Flashlight ProjectWeek of October 7CAD/CAM (by appointment with Paul)Week of October 16Finish up LabWeek of October 21Car Project (this continues through term)

Lab Maximum 16 people

Teams and Labs are Different

Labs occur at the beginning of the term:

basic skills some CNC

Teams are to build cars: you select your

team members, usually 4 to 6 per team

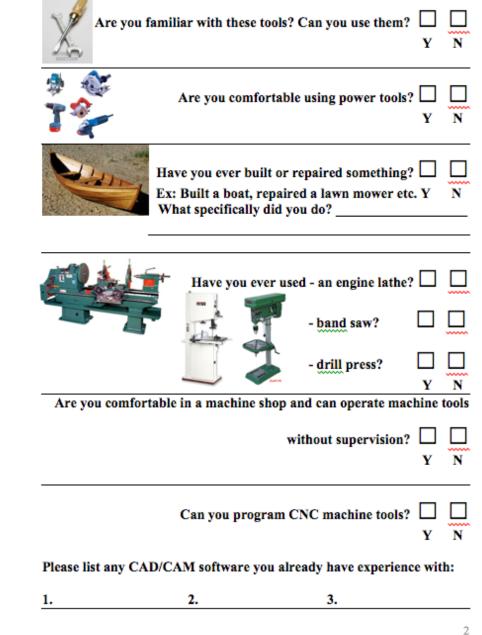
Key dates for project

Sept 16	-	Teams finalized
Sept 30	-	Kits assembled
Week of Sept 30	-	Preliminary design concept review
		(schedule a time for group to meet with Paul)
Week of Oct 14	-	Injection mold wheels
October 21	-	Chassis drawings due
		(waterjet file and dimensioned drawing)
Week of Oct 28	-	Production chassis cut on waterjet
November 6	-	Oral Progress Reports
December 9	-	Contest
December11	-	Evaluation & Reports

Available at 2.810 Website

Please fill out information form; background, interests, skills

Basic information


•Experience in shop

•Experience in mfg

2.810 Manufacturing Processes and Systems

Name:				X
Year:	Course:			
Email:				79
Prerequisites (Ple	ease check off it taken):			
	2.001 or equivalent			
	2.006			
	2.008			
Previous experier describe	nce in industry/research/man	ufacturing, plo	ease	
				Are y
	ignificant manufacturing exp ng a short "show & tell" (abo t?			Please l
List the Topic:		Y	N	<u>1.</u>

2.810 Hands-on Experience Questionnaire

Lab Sign-up

- See Google Doc: web & email
- State your availability & preference
- See schedule (don't miss first 5 weeks)

Labs & Copies (9 per sheet Y_ or N_?)

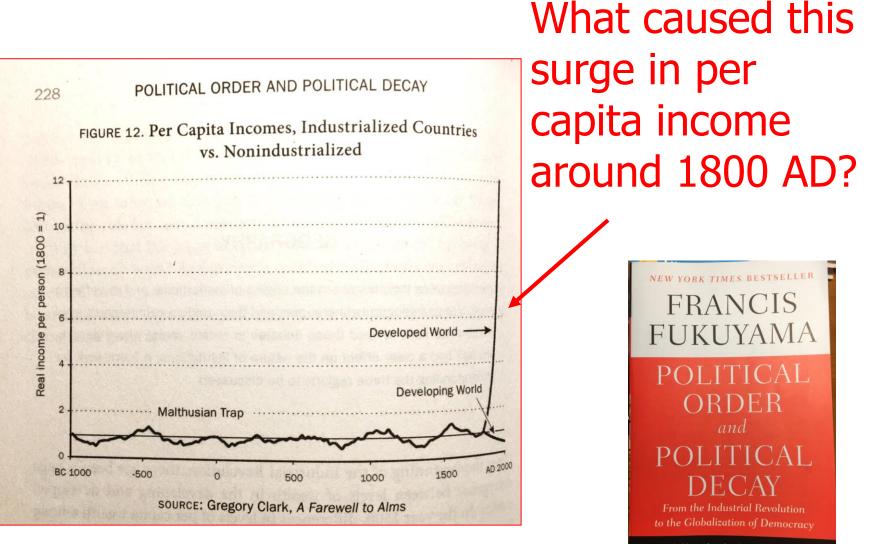
Which Lab sessions are you available to attend?

M 9-Noon
W 9-Noon
Tr 9- Noon
F 9 - Noon

Among the sections you can attend, which is your FIRST preference? Please check only one.

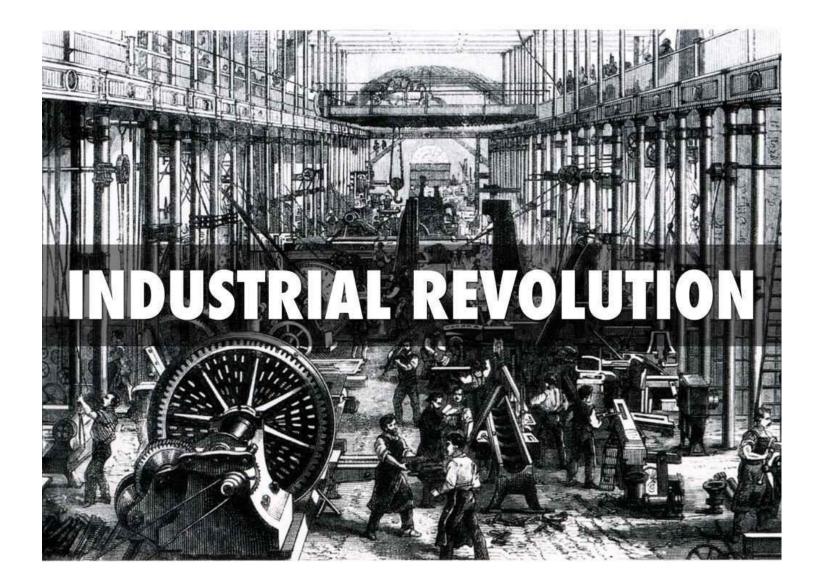
M 9-Noon
W 9-Noon
Tr 9- Noon
F 9 - Noon

Fall Term	2019-2020 Pre-re	egistratio	on Class List	2.810	29-AUG-19
2.810	Mfg Proce	esses and	Systems	(entire class l	ist) Prerequisite Report
MIT ID	Student Name			REC LEC LAB DES	
	Burcat, Steven	2 M	G		sburcat@MIT.EDU
	Du,Lucy Wei	2 D	G		lucydu@MIT.EDU
921650417	Fabian, Andrew Scott	15 L	G		asfabian@MIT.EDU
	Flores,Ryan M.		4		rmflores@MIT.EDU
919375245	Forehand, Brandy Nico	15 L	G		forehand@MIT.EDU
	Frigo,Clare A.		G		frigo@MIT.EDU
	Gee,Kaitlyn Elizabet		G		kgee@MIT.EDU
	Gray, Luke A.	2 M	G		lagray@MIT.EDU
	Hsu,Chun Cheng	2 P	G		chsu40@MIT.EDU
993591648	Hsu, Emily	EM ID	G		emilyhsu@MIT.EDU
	Jaeger, Aaron	MAS M	G		amjaeger@MIT.EDU
	Kilby, Matthew Alexan		G		makilby@MIT.EDU
		2 D	G		rkurfess@MIT.EDU
	Le,Serena	2	4		sle20@MIT.EDU
	Lee,Robyn Wen-Yi	2 P 2 P	G		robynlee@MIT.EDU
		2 P 2 M	G		glemoine@MIT.EDU sqliu@MIT.EDU
	Liu,Sandra Q. Lu,Kuangye	2 M 2 M	G		luky@MIT.EDU
	Mendez, Keegan	HST ED	G		kmendez@MIT.EDU
		HST ED	G		abmiller@MIT.EDU
	Mills,Brian Taylor	2 M	G		millsbt@MIT.EDU
	Morey,Zachariah Keit		G		zkmorey@MIT.EDU
	Park, So Young	15 L	Ğ		mpark15@MIT.EDU
	Rodriguez-Tovar, Jair	EM ID	Ğ		jairo@MIT.EDU
	SaLoutos, Andrew Loui		G		saloutos@MIT.EDU
	Tellbach, Denise	2 D	G		tellbach@MIT.EDU
	Toeldte, Tatjana	15 L	G		ttoeldte@MIT.EDU
	Turner, Adriane Ann	15 L2	G		adrianet@MIT.EDU
919098518	Van De Zande, Georgia	2 D	G		gdvdz@MIT.EDU
911720385	Vinakollu, Nagashumri	2 P	G		nsvina@MIT.EDU
	Wanyiri, Juliet Wanji	EM ID	G		jwanyiri@MIT.EDU
	Yang,Liudi	2 P	G		liudiy@MIT.EDU
920587599	Yeung, Steven Yip Fun	2 D	G		yyeung@MIT.EDU
SUMMARY: 1	Yr 1: 0 Yr 2: 0 0% 0%	Yr 3: 0 0%		Yr G: 31 TO 94%	TAL: 33
2.810			es and System me: M9-12	s(section list)	


Grading

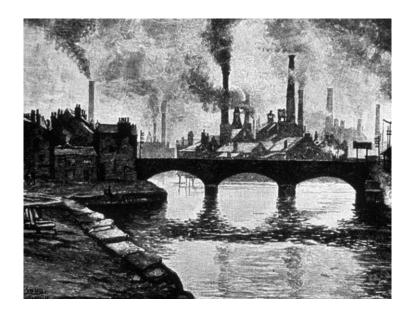
- Quiz 1 30%
- Quiz 2 30%
- Project 30% (team grade)
- Participation 10%
- Total 100%

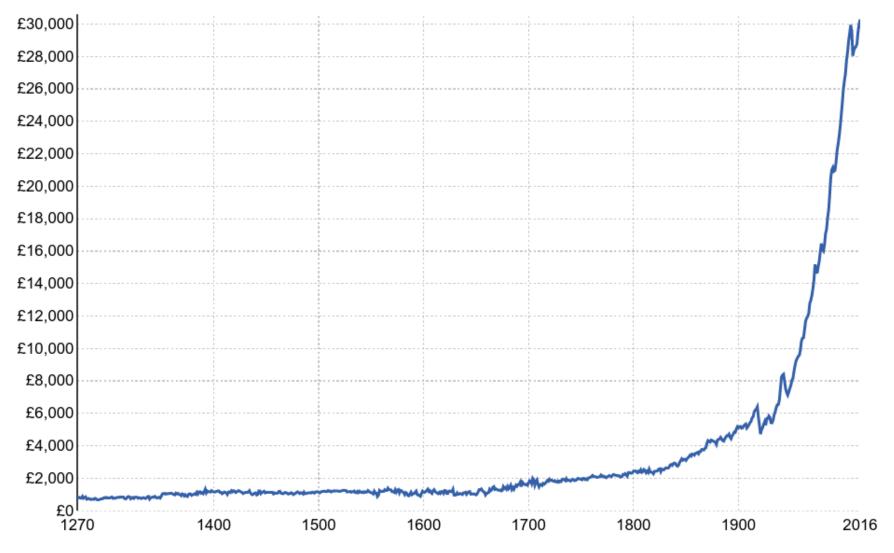
The Mfg Enterprise – Big Picture


- Industrialization and Economic Growth
- Big Push Industrialization
- Divergence
- Democracy and Political Development
- The Future: Technology? Growth?

Employment? Environment?

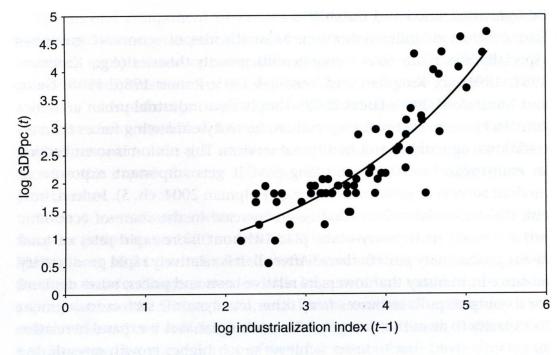
A courageous book by an author at the peak of his analytical and literary powers. —Gerard DeGroot, *The Washington Post*


Ref. p 228₁₈


http://www.historydiscussion.net/history/industrial-revolution/history-of-the-industrial-revolution/1784

The Industrial Revolution

- England 1760 1830s
- Coal
- Steam power
- Textile mills
- Steel
- Railroads
- Pollution

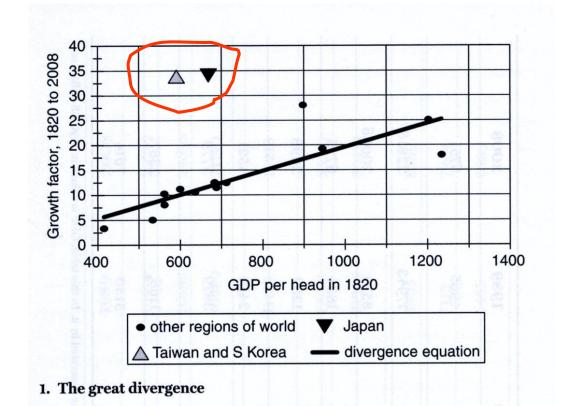

GDP per capita in England since 1270 Adjusted for inflation and measured in British Pounds in 2013 prices

Source: GDP in England (using BoE, 2017) Note: Data refers to England until 1700 and the UK from then onwards. OurWorldInData.org/economic-growth • CC BY-SA

Our Wor in Data

The importance of Manufacturing to economic growth

Figure 4.1

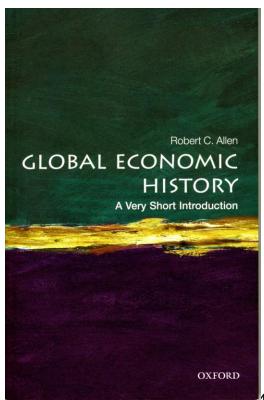

```
Do industrial countries get richer?
```

Source: Data from Bairoch (1982: table 4, p. 281) and Maddison (2001: tables A1–A3, pp. 185, 195, 215)

The plot shows the correlation, both in logs, of current GDP per capita (1820 -1950: Maddison), and past levels of industrialization per capita (50 or 70 years earlier: Bairoch).

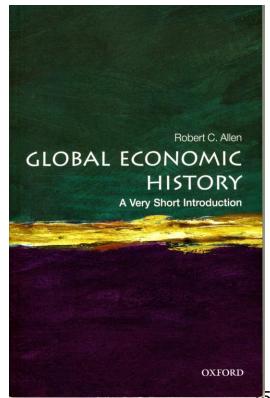
Reference; Jeffrey G. Williamson, "Trade and Poverty" MIT Press, 2011, p 50

The Great Divergence



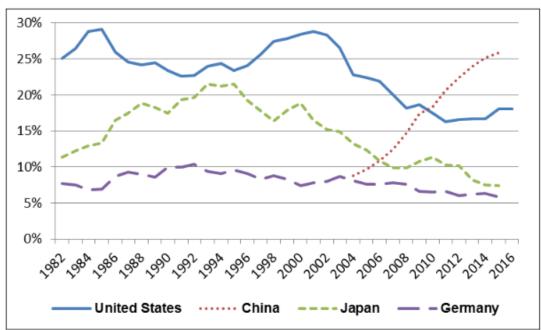
R.C. Allen 2011

How do you join the developed?


- "Big Push Industrialization"
 - Do everything at once
 - Trust
 - Planning Authority
 - Then Transition...
- Required GDP growth

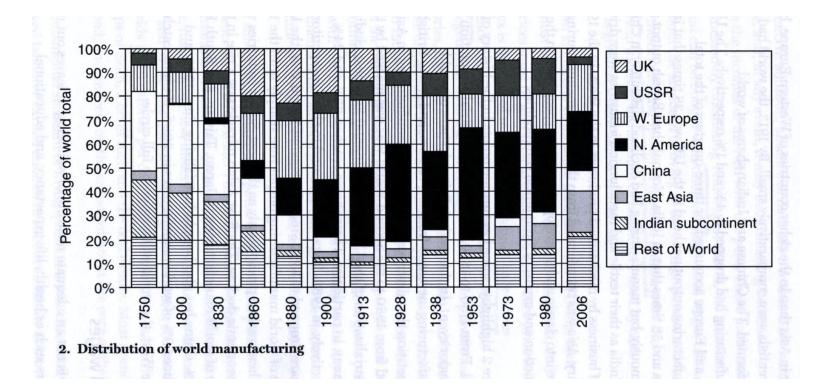
-~6% over 60years

How do you join the developed?


- "Big Push Industrialization"
 - Japan
 - South Korea
 - Taiwan
- Less successful
 - Russia
 - South America

The Importance of Manufacturing for Economic Development

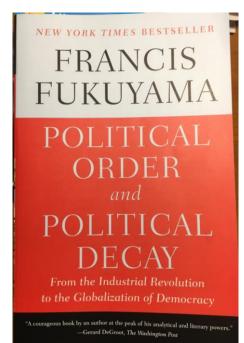
• The rise of China and Manufacturing


Figure 2. Selected Countries' Shares of Global Manufacturing Value Added

Calculated in current U.S. dollars

Source: U.N. National Accounts Main Aggregates Database, value added by economic activity, at current prices—U.S. dollars.

Global Mfg Shares 1750-2006



R.C. Allen 2011

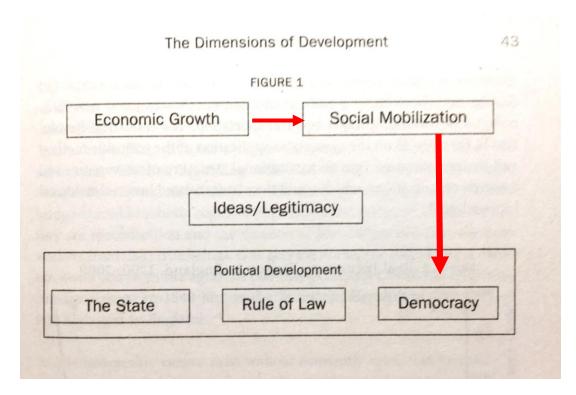

The Role of Economic Growth in Political Development

	FIGURE 1		
Economic G	rowth	Social M	lobilization
here salar and the set			
	Ideas/Legitir	macy	
	Ideas/Legitii	nacy	
		201000000	Children and the
1000 200-1 br	Political Develo	pment	

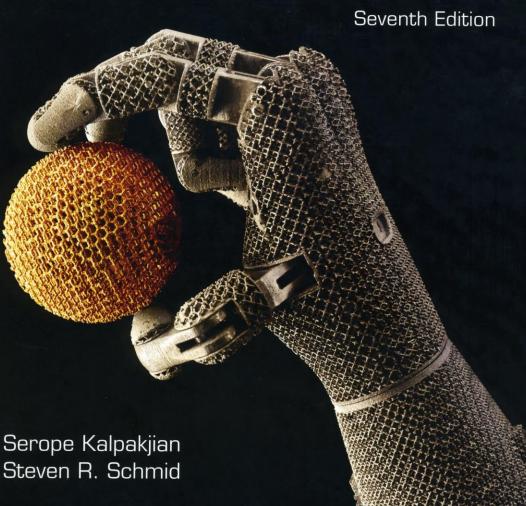
Ref. p 43

How Democracy might develop...

Ref. p 43

NEW YORK TIMES BESTSELLER FRANCIS FUKUYAMA POLITICAL ORDER and POLITICAL DECAY From the Industrial Revolution to the Globalization of Democracy

"A courageous book by an author at the peak of his analytical and literary powers." —Gerard DeGroot, The Washington Post


The Future of Manufacturing

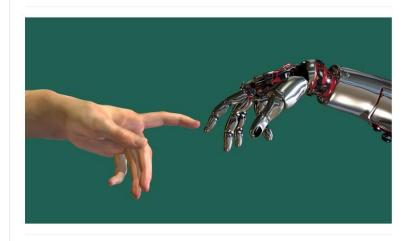
- Technology development
- Social and Political Environment
- The interaction between the two

Technology Development:

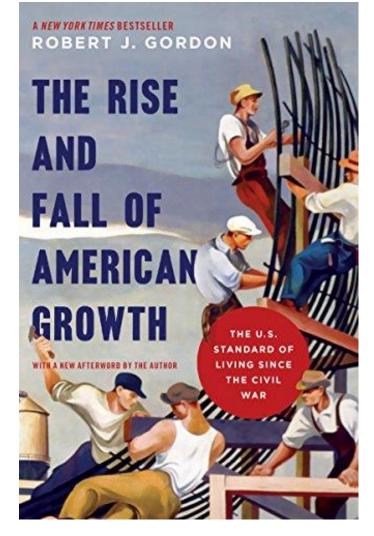
- Digital Mfg
- A.I.
- Integrated sensors
- blockchain
- 3D Printing
- Automation
- Industry 4.0
- New Products

Manufacturing Engineering and Technology

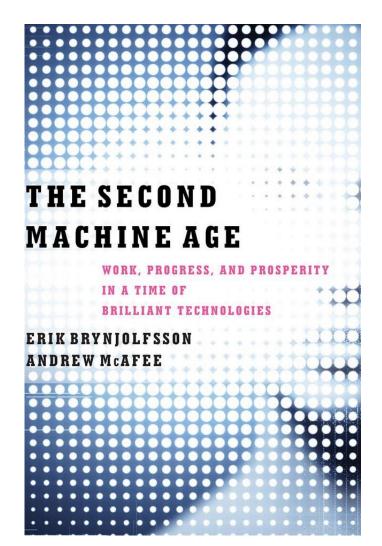
Future trends: Jobs & Growth



News

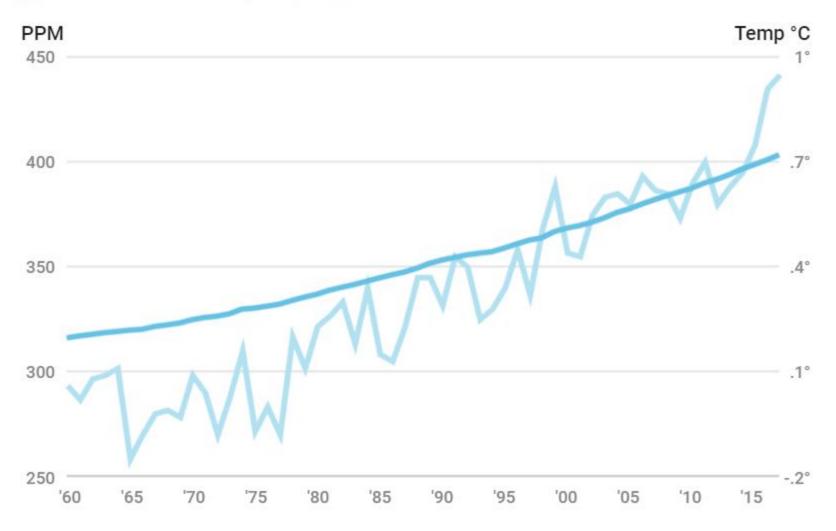

Impact of automation on developing countries puts up to 85% of jobs at risk

27 Jan 2016


Share This: У f in 🗇

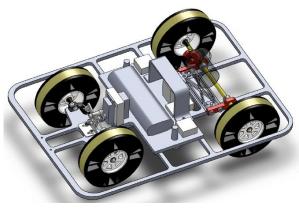
A new report from Citi and the Oxford Martin School explores the varying impact that automation of jobs will have on countries and cities around the world, in the near future and the coming decades.

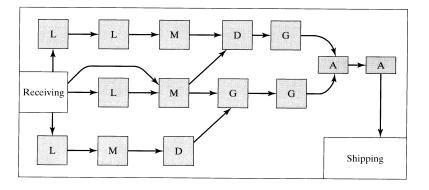
Future trends: "the bounty & the spread"



The Environment: Climate Change

CO2 concentration (PPM) Temperature°C




The Nuts and Bolts of 2.810

Processes

Project

Systems

Basic Concepts for 2.810

- 1. Manufacturing Processes
 - Abstraction and trends
 - Performance Attributes
 - Physics

MACHINING PROCESSES

SINGLE POINT MACHINING

- TURNING
- BORING
- FACING
- FORMING
- SHAPING, PLANNING

MULTIPOINT MACHINING

- DRILLING
- MILLING
- SAWING, FILING
- BROACHING, THREAD CUTTING

GRINDING

- SURFACE GRINDING
- CYLINDRICAL GRINDING
- CENTERLESS GRINDING
- INTERNAL GRINDING
- FORM GRINDING

ABRASIVE WIRE CUTTING HONING

LAPPING ULTRASONIC MACHINING BUFFING, POLISHING URNISHING TUMBLING GRIT BLASTING

CHEMICAL MACHINING

- ENGRAVING
- CHEMICAL MILLING
- CHEMICAL BLANKING

ELECTROCHEMICAL MACHINING ELECTRICAL DISCHARGE MACHINING LASTER MACHINING ELECTRON BEAM MACHINING PLASMA-ARC CUTTING FLAME CUTTING, WATER JET CUTTING

Manufacturing processes, ...

DEFORMATION PROCESSES

OPEN-DIE FORGING IMPRESSION-DIE FORGING CLOSED-DIE FORGING

- PRECISION OR FLASHLESS FORGING
- COINING
- HEADING, PIERCING, HUBBING, COGGING, FULLERING, EDGING, ROLL FORGING, SKEW ROLLING
- ROLLING
- FLAT, RING, THREAD, GEAR, PIERCING EXTRUSION
- DIRECT, INDIRECT HYDROSTATIC, IMPACT, BACKWARD DRAWING
- ROD & WIRE, FLAT STRIP, TUBES SWAGING

SHEARING

BENDING • PRESS-BRAKE FORMING, ROLL FORMING TUBE FORMING BEADING, FLANGING, HEMMING, SEAMING STRECH FORMING BULGING DEEP DRAWING PRESS FORMING RUBBER FORMING SPINNING EXPLOSIVE FORMING ELECTROHYDRAULIC FORMING MAGNETIC-PULSE FORMING SUPERPLASTIC FORMING

METAL CASTING AND POWDER PROCESSES

CASTING CASTING OF INGOTS CONTINUOUS CASTING

SAND CASTING SHELL MOLDING SLURRY MOLDING INVESTMENT CASTING (LOW-WAX PROCESS) EVAPORATIVE CASTING DIE CASTING (GRAVITY-FEED, PRESSURIZED...) CENTRIFUGAL CASTING SQUEEZE CASTING RHEOCASTING

CRYSTAL GROWING

- CRYSTAL-PULLING
- ZONE MELTING

Electro forming Plasma Spraying

POWDER METALLURGY PRESSING ISOSTATIC PRESSING SINTERING

JOINING PROCESSES

MECHANICAL JOINING • BOLTS, SCREWS, RIVETS SOLID-STATE WELDING • DIFFUSION, FORGING, FRICTION, DEFORMATION LIQUID STATE WELDING RESISTANCE WELDING ARC WELDING • THERMAL WELDING HIGH-ENERGY BEAM WELDING • ELECTRONIC BEAM, LASER LIOUID-SOLID STATE BONDING BRAZING SOLDERING ADHESIVE BONDING PLASTICS AND COMPOSITES JOINING (MECHANICAL, HEATING, SOLVENTS, ULTRASONICS...)

POLYMER PROCESSES

EXTRUSION FIBER SPINNING CALANDERING FILM BLOWING COATING (MELTS, SOLUTION, PLASMA, ELECTROSTATIC, PLASTISOL, UV CURABLE...) **BLOW MOLDING** INJECTION MOLDING REACTION INJECTION MOLDING (RIM) COMPRESSION MOLDING TRANSFER MOLDING CASTING THERMOFORMING ROTATIONAL MOLDING SOLID STATE FORMING

MACHINING

ETCHING SOLVENT PROCESSING FOAMING BONDING IMPREGNATING PAINTING

COMPOSITES PROCESSES

(POLYMER COMPOSITES)

PULTRUSION FILAMENT WINDING PULL FORMING BRAIDING AUTOCLAVE MOLDING COMPRESSION MOLDING (SMC) RESIN TRANSFER MOLDING AUTOCOMP MOLDING HAND LAY-UP SPRAY-UP AUTOMATIC TAPE LAY-UP STAMPING DIAPHGRAM FORMING INJECTION MOLDING (FILLED THERMOPLASTICS, BMC...) REINFORCED REACTION INJECTION MOLDING (RRIM)

(METAL MATRIX COMPOSITES)

HOT PRESSURE BONDING HOT ISOSTATIC PRESSING LIQUID METAL INFILTRATION ELECTRODEPOSITION PLASMA SPRAY DEPOSITION

CERAMICS PROCESSES

POWER PROCESSES

- CONSOLIDATION
- SINTERING

MELT PROCESSES

- CRYSTALLINE MATERIALS (SILICON)
- GLASSES
- DRAWING, CASTING, BLOWING, TEMPERING (OPTICAL & STRUCTURAL FILTERS)
- COATING

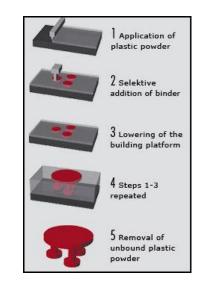
SOL-GEL CERAMICS PROCESSING

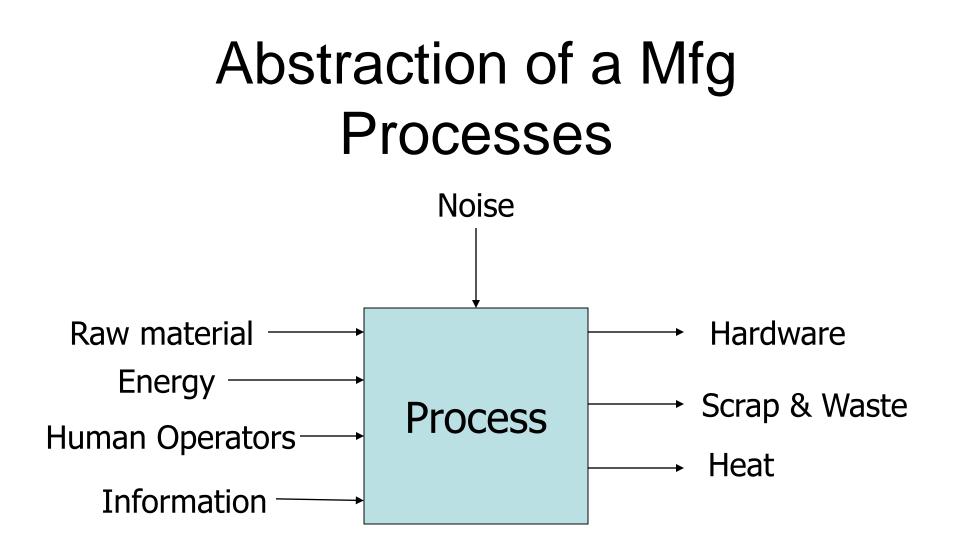
MICROELECTRONICS PROCESSING

CRYSTAL GROWTH

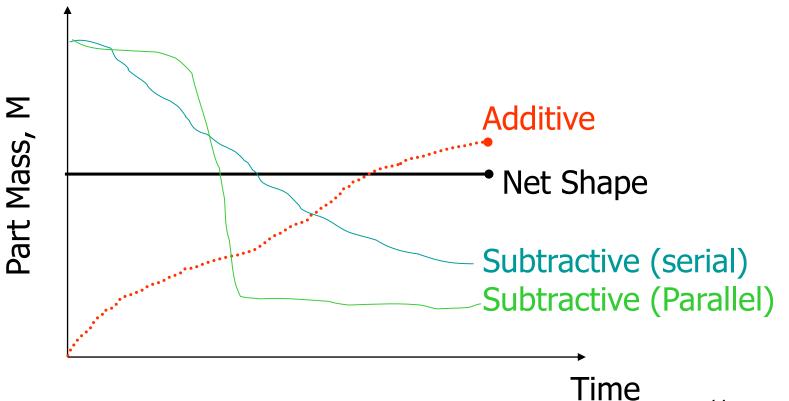
- CZOCHRALSKI CRYSTAL GROWTH
- FLOAT-ZONE CRYSTAL GROWTH WAFER PROCESSING
- SLICING, ETCHING, POLISHINNG SURFACE PROCESSES
- CHEMICAL VAPOR DEPOSITION (CVD)
- EPITAXIAL FILM GROWTH
- POLY CRYSTALLINE FILM GROWTH
- S₁0₂ FILMS
- OTHER (DIELECTRICS, METALS)
 OXIDATION
- ION IMPLANTATION
- PHYSICAL VAPOR DEPOSITION
- SPUTTERING
- EVAPORATION
- LITHOGRAPHY
- PHOTORESIST
- ELECTRON BEAM, X-RAY, ION BEAM LITHOGRAPHY
- WET ETCHING
- CHEMICAL
- DRY ETCHING
- PLASMA
- SPUTTER
- REACTIVE ION
- PACKAGING
- DICING
- DIE ATTACHMENT
- WIRE BONDING
- ENCAPSULATION

172 processes + rapid prototyping + etc, etc


ADDITIVE MANUFACTURING TECHNOLOGIES



Some Processes developed out of LMP (bldg 35)


Process Classification

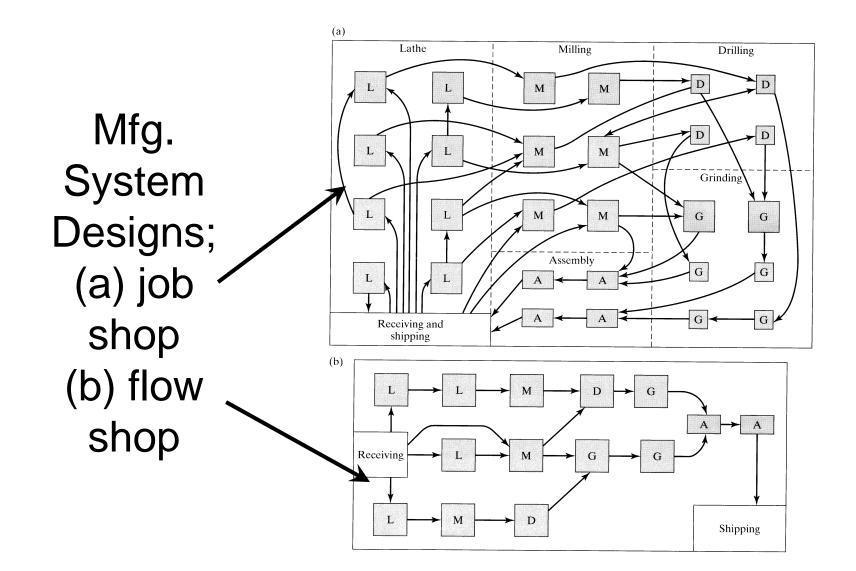
- Materials Geometry
- Machines vs • Time
- Applications
 Energy

Process Classification

- Geometrical transformation
 - Subtractive / Additive / Net
- Time sequence
 - Serial / Parallel
- Energy domain
 - Mechanical / Thermal / Chemical / Electrical

Geometrical classification

Transformation				REMOVAL PR	OCESSES]		
Mode		SERIAL				PARALLEI	L	
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical
	Cutting Grinding Broaching Polishing Water jet	Laser cutting Flame cutting Plasma cutting		EDM	Die stamping		ECM Photolithograp	EDM hy
Transformation				ADDITION PR	OCESSES]		
Mode		SERIAL				PARALLEI	L	
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical
	3D printing	Laser sintering	Stereolithograp	hy	HIP	Sintering	LPCVD Plating	
Transformation				SOLIDIFICATION	PROCESSES]		
Mode		SERIAL				PARALLEI	_	
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical
	Ultrasonic	Plasma spray		E-beam	Inertia	Casting	Diffusion bond	ling
	Welding			Welding Arc welding Resistance welding	bonding	Molding		
Transformation				DEFORMATION	PROCESSES	7		
Mode		SERIAL		-		PARALLEI	L	
Energy Source	Mechanical	Thermal	Chemical	Electrical	Mechanical	Thermal	Chemical	Electrical
	Bending	Line heating			Drawing			
	Forging (open)				Forging (die)			
	Rolling							


 \ast Taken from "Manufacturing Processes and Process Control," David E. Hardt

Basic Concepts for 2.810

2. Manufacturing

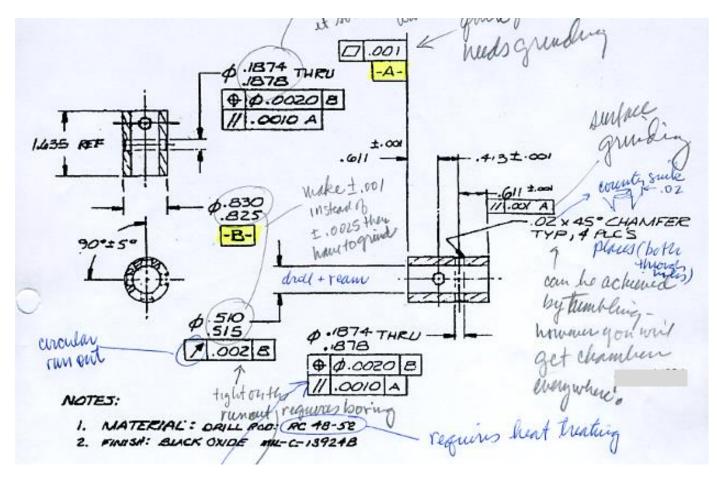
Systems

- Physical part
- Required machines
- Process steps
- Equipment
 - arrangements
- Tools, History

Manufacturing Systems

- Configurations
- Analysis tools (time performance)
- Historical development
- Current practice
- Future trends

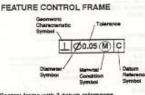
From part to system

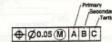

Physical Part	Process Steps	System Design
Shape, Materials, Tolerances	Equipment, Tools, Procedures	Equipment arrangement, Flows Skill Levels, other Resources
Representation	Process Plan -	Cell or system-

Process Planning

- Identify machines
- Tools
- Settings
- Steps required to produce a geometry to tolerance
- Time estimation

Process Plan	#	Machine	Operation (V = Volume A = Area P = Perimeter)	Fixtur e	Tool Change	Run (R = Rough F = Finish)	Debur r Inspec t
Time Estimation	1 0	1	Saw stock to ~ 4.125" A = 5.625 in2 P = 9 in	0.23	_	2.02	Measu 0.20D 0.05I
Rod	2 0	2	Mill two ends to length 4" V = 0.703 in3 A = 11.25 in2 P = 19 in	0.20 0.20	2	0.13R 0.75F	0.63D 0.05I 0.13M
Support	3 0	2	Mill width to 2" V = 2.5 in3 A = 10 in2 P = 13 in	0.20	_	0.46R 0.67F	0.43D 0.05I 0.13M
	. 00	2	Mill out 2"x1.5"x4" V = 12 in3 A = 14 in2 P = 15 in	-	_	2.19R 0.93F	0.50D 0.05I 0.13M 0.13M
	10	2	Drill hole 1" diameter -Center drill -Pilot drill 1/2" -Pilot drill 63/64" -Ream	0.20	2 2 2 2	0.03 0.05 0.04 0.01	0.21D 0.05I 0.17M
12	1	2	Bore 1" radius V = 0.79 in3 A = 1.57 in2 P = 7.28 in	0.20	2	0.96R 0.10F	0.24D 0.05I 0.06M
FRONT 400 2.00 2.00		3	Sand 0.5" radii V = 0.05 in3 A = 0.79 in2 P = 3.14 in	0.08	_	0.20R 0.21F	0.10D 0.05I 0.06M 0.06M
			Totals:	1.31	12.00	8.75	5 ^{3.63} 51

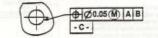

Engineering Drawing; Connecting Link



Geometric Tolerancing Explanations

(See also Kalpakjian pages 1057-1063)

Control frame with 3 datum references


DATUMS

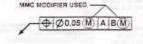
A Datum is a theoretically exact point, exis or plane derived from the true geometric countercart of a specified datum teature. A datum is the origin from which the location or geometric characteristics of features of a pain are established.

A Datum Feature is an actual feature of a part (for example a surface, hole, or soit that is used to establish a datum. Each datum requiring identification is assigned a different etter (escapt I, O, or O). Double letters (AA, AB, etc.) may be used when single letters are enhanced.

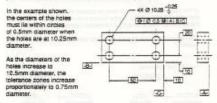
When a issture controlled by a geometric tolerance also serves as a datum, the control iname and datum are combined.

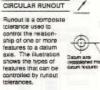
Flatness is the condition of a surface having all points in one plane. A flatness tolerance specifies a zone

defined by 2 parallel planes. In the example shown the surface must lie between 2 parallel planes 0.18mm apart and the surface must be


within the specified size limits.

(M) Maximum Material Condition (MMC)

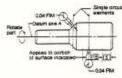

The condition in which a feature of size contains the maximum amount of material within the stated size initial fold maximum note diameter or maximum shall diameter. A feature identified as MMC is permitted greater postponal or form tokerance as its size departs from MMC.



If position tolerances are to be modified as features depart from maxmum material condition, the MMC modifier must be specified on the drawing.

A positional tolerance defines a zone within which the carrier, axis or center plane of a feature of size is permitted to vary from the true (exact) position. Basic dimensions establish the true position.

The tolerances, in this example, apply to the center distance between holes as well as the location of these features as a group from the datum planes (A-B-C).



Surfaces at not angues a the data as a surface and surfaces contained abun teaces abun teaces

Cases Means

Circular runout provides control of circular elements of a surface. It can be used to control the outmulative vanations of cirouterty (noundness) and coastaty (noundness) and coastality. In the example shown, each circular element of the surfaces toeranced must fail within 0.54mm

In the example shown, each circular element of the suitates beenanced must fail within 0.04mm (Full Indicator Movement) when the part is rotated 360° about the datum axe.

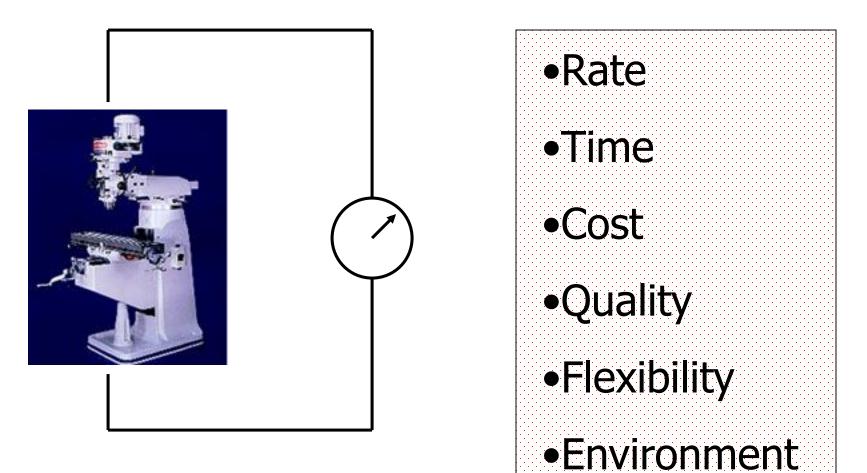
210041A

10 D4 A

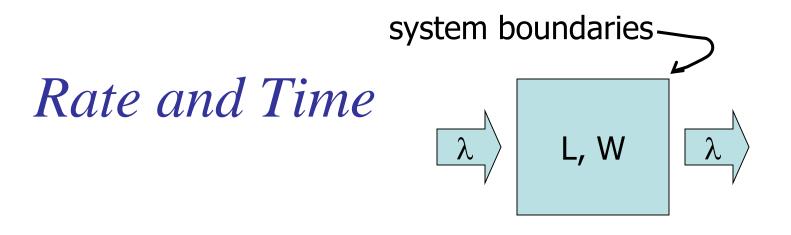
45 21

-13-3-

53


Process Plan Time Estimate

Connecting Link



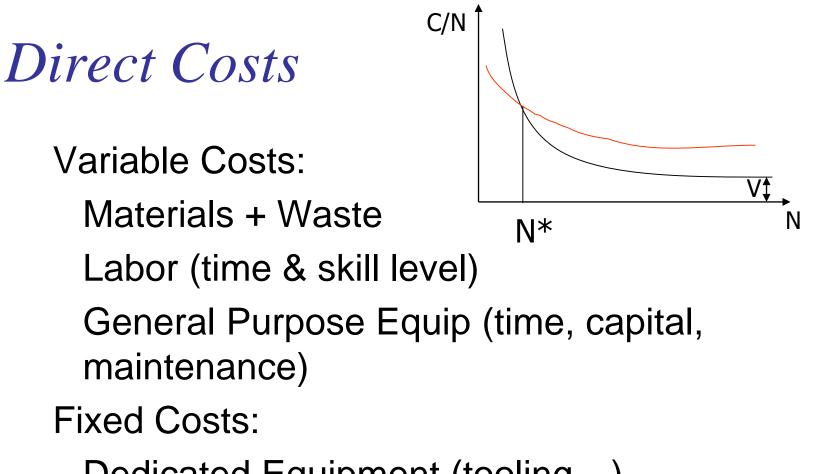
#	Machine	Operation (V = Volume A = Area	# Dims.	Fixtur e	Tool Change	Run (R = Rough
10	1	P = Perimeter) Face end Assume V = 0.075 in3	_	0.17	0.1	F = 0.08 Finish)
20		Turn diameter to 0.827" V = 0.105 in3	_	-	_	0.11
30		Turn diameter finish pass A = 23 in2	1	-	_	1.35
40		Center drill 0.512" dia.	-	-	0.1	0.05
50		Drill with 0.4688" drill	-	-	0.1	0.28
60		Bore to 0.512" V = 0.033 in3	1		0.1	0.05
70	2	Grind to exact length of 1.635" Assume V = 0.075 in3	1	0.04	_	0.11R 0.01F
80	3	A = 0.331 in2 Fixture in collet on indexer to drill holes V = 1.65 in3	_	0.17	-	-
90		Center drill 0.1875" hole	-	-	0.5	0.05
10 0		Drill to 11/64"	-	-	0.5	0.17
11 0		Ream to 0.1875"	2	-	0.5	0.06
12 0		Index part	_	0.1	_	_
13 0		Center drill 0.1875" hole	_	_	0.5	0.05
14 0		Drill to 11/64"	-	-	0.5	0.17
15 0		Ream to 0.1875"	4	-	0.5	0.06
16 0		Deburr all edges P = 10.77 in	_	_	_	0.72 54
		Totals:	9	0.48	3.40	3.32

Performance measures

See "Competitive Attributes..." T. Gutowski

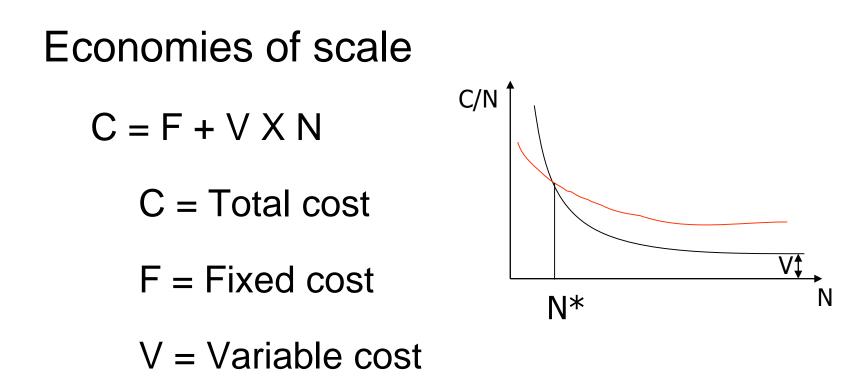
Little's law: $L = \lambda W$ (all average values)

- L = units in system (inventory)
- λ = rate of material arrival
- W = time in system


Time at the Machine

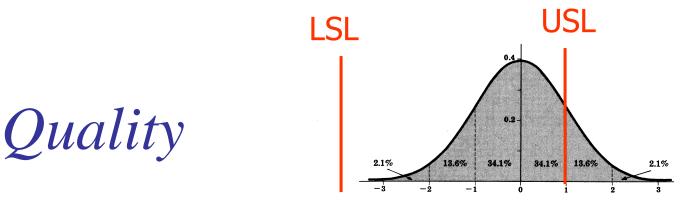
- Time at the machine
 - Set-up time,
 - Process time, (parallel, serial)
 - Multi-cavity tooling
 - Post processing Time
 - Machine Rate

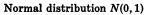
Time for the Cell or Line


Multiple Machine Systems:

- Batch processing
- Continuous processing
- Bottlenecks and Balancing
- Waiting
- Buffers

Dedicated Equipment (tooling...)


Direct Costs



N = number of units

Quality

- Satisfied Customer (systems level)
- Deviation from target (process level)
 - Establishing the target (design)
 - Normal variation (process in control)
 - Observing deviation (SPC)

Process Capability Index, C_p and C_{pk}

- $C_p = (USL-LSL) / 6\sigma$
 - USL = Upper Specification Limit
 - LSL = Lower Specification Limit
 - $-\sigma$ = standard deviation of the process output
- USL and LSL are something specified by <u>design</u>
- The standard deviation is due to variation in the process

Flexibility

- Ability to accommodate different geometries, materials, production volumes, etc.
- Measured as $\Delta \cos t$, $\Delta time$, etc.

Environmental performance

- Process Level
- Product Level
- Life Cycle Assessment
- Enterprise Level
- Global Level

2.810 Project

- Form Teams
- Cooperate
- Manage
- Design
- Manufacture
- Test
- Compete
- Report and Evaluate

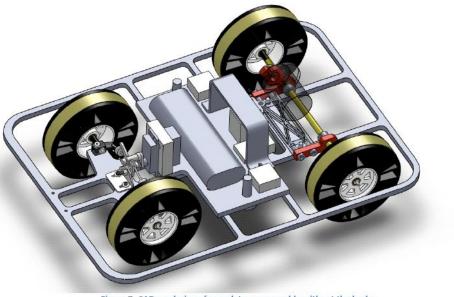
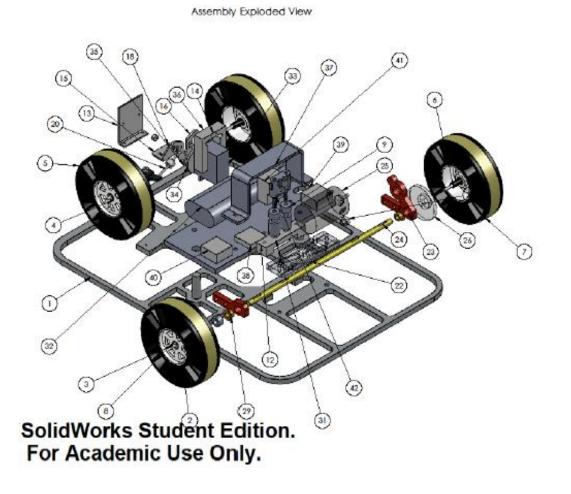



Figure 7- CAD rendering of complete car assembly without the body.

Detailed Prints

Exploded Assembly with BOM

ITEM NO.	PART NUMBER	QTY.
1	chassis	1
2	wheel	4
3	frontaide	4
4	bearing	8
5	front tire	4
6.	SPACER	4
7	rubber band	4
8	nylon washer_small	4
9	Banana Jack	2
10	Maglock Catch	1
11	Maglock Strike	
12	clip holder plate	1
13	Body Mount Bracket	1
14	steering block	2
15	steering mount	1
16	V bar	1
17	shoulder screw	2
10	acrew 0 5	I
19	nut 4_40	1
20	tie rod	1
21	fie rod 2	1
22	CONNECTOR BLOCK	1
23	MOUNTR	1
24	REAR SHAFT	1.
25	MOTOR	1
26	LARGE GEAR	1-
27	SMALL GEAR	1
28	STOPPER_RING	1
29	REAR_BUSHING	2
30	MOUNTR	1
31	Control Box Body	
32	battery	1
33	servo	1
34	servo connector	1
35	servo drive connector	1
36	servo holder	1
37	handle	1
35	transponder	1
- 39	motor controller	1
40	Ironciever	1
4]	plug adapter	1
42	BP1252091 (DualBanan al	1

Figure 8- Exploded Assembly with BOM

CADCAM and CNC

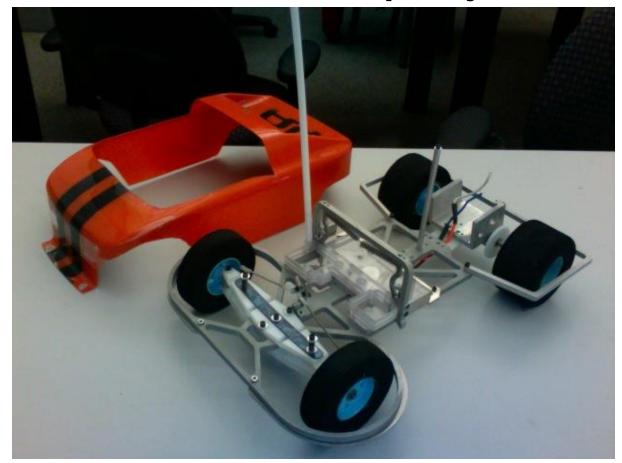
connect, configure, & go

SERVICES find resources fa

SolidWorks

FUSION 360

OMAX[®] ABRASIVE WATERJETS


OMAX Instruction-1st team meeting Needs DXF file OMAX app available

Check List

- Hand in information sheets
- Fill in Google doc for labs <u>ASAP</u>
- Attend Lab next week
- Read:
- 1. "Competitive Attributes..."
- 2. "Mfg. Processes and Control"
- 3. "Geometric Tolerancing"
- 4. skim Kalpakjian Ch 1-9.
- Homework #1

2.810 team project

http://www.youtube.com/watch?v=BcnwGV4tNNY