Variability in Manufacturing Systems

Stanley B. Gershwin gershwin@mit.edu http://web.mit.edu/manuf-sys Massachusetts Institute of Technology

Manufacturing Processes and Systems, 2.810

November 1, 2017

Manufacturing Systems Definitions

- *Manufacturing:* the transformation of material into something useful and portable.
- Manufacturing System: A manufacturing system is a set of machines, transportation elements, computers, storage buffers, people, and other items that are used together for manufacturing.
 - * Alternate terms:
 - ► Factory
 - ► Production system
 - ► Fabrication facility
 - * Subsets of manufacturing systems, which are themselves systems, are sometimes called *cells, work centers,* or *work stations* .

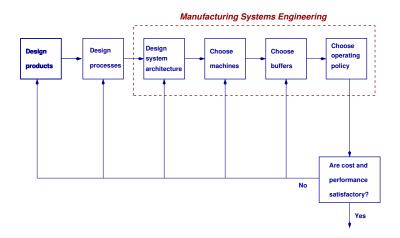
Manufacturing Systems Definitions

• Manufacturing Systems Engineering:

* The design and operation of new manufacturing systems;

* The analysis and improvement of existing manufacturing systems.

Manufacturing Systems Manufacturing Systems Engineering



Manufacturing Systems Manufacturing Industry Challenges

- Short product lifetimes. Frequent factory reconfiguration or replacement. Limited time for real-time learning to optimize factory.
- Large product diversity. Factories must be flexible.
- Short lead times and impatient customers.
- Inventory is perishable. It loses value rapidly due to obsolescence.
- Variability, uncertainty, and randomness

Manufacturing Systems Manufacturing Systems Engineering Objectives

 Manufacturing systems must be complex to manage or tolerate variability, uncertainty, and randomness.

- * Variability: change over time.
- * Uncertainty: incomplete knowledge.
- * Randomness: unpredictability that has some regularity that can be described precisely.

Manufacturing Systems Manufacturing Systems Engineering Objectives

Improvements in the design and operation of manufacturing systems must

* **reduce** the variability, uncertainty, and randomness, or

* reduce the *sensitivity* of systems to variability, uncertainty, and randomness.

Manufacturing Systems Manufacturing Systems Engineering Objectives

- Satisfy demand.
- Meet due dates.
- Keep quality high.
- Keep inventory low.

- Be robust.
 - * Be insensitive to disruptions.
 - * Respond gracefully to disruptions.
 - * Respond gracefully to demand changes, engineering changes, etc.

Manufacturing Systems Quantity, Quality, and Variability

- **Design Quality** the design of products that give customers what they want or would like *(features)*.
- Manufacturing Quality the manufacturing of products to avoid giving customers what they don't want or would not like (defects).

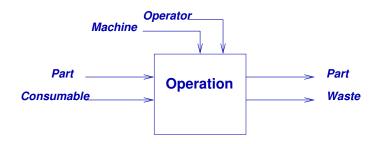
Manufacturing Systems Quantity, Quality, and Variability

- Quantity how much is produced and when it is produced.
- Quality how well it is produced.

In this session, we focus on quantity.

General Statement: Variability is the enemy of manufacturing.

Why care about variability? What is an operation?



Nothing happens until everything is present.

Why care about variability? What is an operation?

Whatever does not arrive last must wait.

- Inventory: parts waiting.
- Under-utilization: machines waiting.
- Idle work force: operators waiting.

Why care about variability? Examples

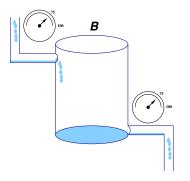
- Factories are full of random events:
 - * machine failures
 - * changes in orders
 - * quality failures
 - * human variability
- The economic environment is uncertain:
 - * demand variations
 - ⋆ supplier unreliability
 - ★ changes in costs and prices

Why care about variability?

Therefore, factories should be

- designed and operated
- to minimize the
 - creation, propagation, or amplification
- of uncertainty, variability, and randomness.

No variability

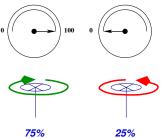


75 gal/sec in, 75 gal/sec out constantly

The tank is always empty.

Variability from random valves

Consider a random valve:

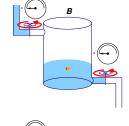


- The average period when the valve is open is 15 minutes.
- The average period when the valve is closed is 5 minutes.
- Consequently, the average flow rate through it is 75 gal/sec.

... as long as flow is not impeded upstream or downstream.

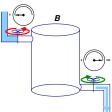
Variability from random valves

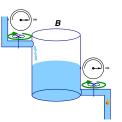
Four of the possibilities for *two* valves and one tank:



100 gal/sec in, 0 out

0 in, 0 out





В

100 gal/sec in, 100 gal/sec ou

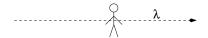
Observation:

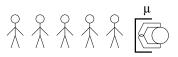
- There is never any water in the tank when the flow is constant.
- There is sometimes water in the tank when the flow is variable.

Conclusions:

- 1. You can't always replace random variables with their averages.
- 2. Variability causes inventory!!

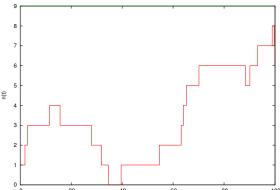
- To be more precise, non-synchronization causes inventory.
 - ★ Living things do not acquire energy at the same time they expend it. Therefore, they must store energy in the form of fat or sugar.
 - Rivers are dammed and reservoirs are created to control the flow of water — to reduce the variability of the water supply.
 - * For solar and wind power to be successful, energy storage is required for when the sun doesn't shine and the wind doesn't blow.

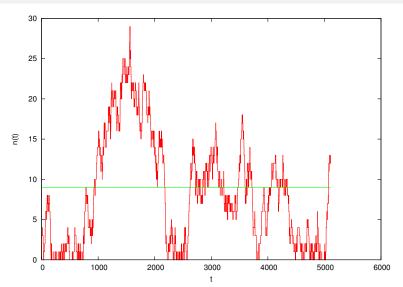




- Suppose customers arrive at time 0, time 1 minute, 2 minutes, etc. and that service time is always exactly 54 seconds (.9 minutes).
 - ★ Then there is 1 customer in the system for 54 seconds of every minute and 0 customers for 6 seconds every minute. Therefore there are 54/60=.9 customers in the system on the average.

- Suppose customers arrive with exponentially distributed inter-arrival times with average inter-arrival time 1 minute; and that service time is exponentially distributed with average service time 54 seconds.
 - \star Then the average number of customers in the system is 9.





Let $\rho=\lambda/\mu$. Under the assumptions of exponential inter-arrival time, exponential service time, and infinite buffer (called M/M/1 queue), it can be shown that the average number of parts in the system is

$$\bar{n} = \sum_{n} nP(n) = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}.$$

 ρ is called the *utilization* of the server.

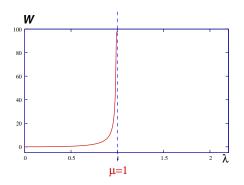
Little's Law: $L = \lambda W$, where L is the average number of customers in a system, W is the average customer waiting time, and λ is the average arrival rate.

This is true for almost all queuing systems in steady state.

In the M/M/1 queue, $L=\bar{n}$, so the average waiting time is

$$W = \frac{1}{\mu - \lambda}.$$

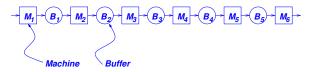
 ρ is called the *utilization* of the server.



- μ is the *capacity* of the system.
- If $\lambda < \mu$, system is stable and waiting time remains bounded.
- If $\lambda > \mu$, waiting time grows over time.

Flow Lines

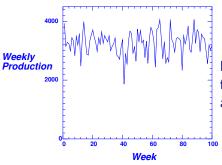
... also known as a Production or Transfer Line.



- Machines are unreliable.
- Buffers are finite.
- In many cases, the operation times are constant and equal for all machines.

Flow Lines

Output Variability



Production output from a simulation of a transfer line.

Failures and Repairs

• Machine is either up or down .

• MTTF = mean time to fail.

• MTTR = mean time to repair

• MTBF = MTTF + MTTR

Production rate

- If the machine is unreliable, and
 - \star its average operation time is τ ,
 - * its mean time to fail is MTTF,
 - * its mean time to repair is MTTR,

then its maximum production rate is

$$\frac{1}{\tau} \left(\frac{\mathsf{MTTF}}{\mathsf{MTTF} + \mathsf{MTTR}} \right)$$

Proof

- Average production rate, while machine is up, is $1/\tau$.
- Average duration of an up period is MTTF.
- Average production during an up period is MTTF/ τ .
- Average duration of up-down period: MTTF + MTTR.
- Average production during up-down period: MTTF/ τ .
- Therefore, average production rate is $(MTTF/\tau)/(MTTF + MTTR)$.

Geometric Up- and Down-Times

• Assumptions: Operation time is constant (τ) . Failure and repair times are geometrically distributed.

• Let p be the probability that a machine fails during any given operation. Then $p = \tau/\mathsf{MTTF}$.

Geometric Up- and Down-Times

- Let r be the probability that M gets repaired during any operation time when it is down. Then $r = \tau/\text{MTTR}$.
- Then the average production rate of M is

$$\frac{1}{\tau} \left(\frac{r}{r+p} \right).$$

• (Sometimes we forget to say "average.")

Bottleneck

$$- \underbrace{M_1}_{} + \underbrace{B_1}_{} - \underbrace{M_2}_{} + \underbrace{B_2}_{} - \underbrace{M_3}_{} + \underbrace{B_3}_{} - \underbrace{M_4}_{} + \underbrace{B_4}_{} - \underbrace{M_5}_{} - \underbrace{B_5}_{} - \underbrace{M_6}_{} +$$

• The production rate of the line is the production rate of the *slowest* machine in the line — called the *bottleneck* .

• Slowest means *least average production rate*, where average production rate is calculated from one of the previous formulas.

Bottleneck

Production rate is therefore

$$P = \min_{i} \frac{1}{\tau_{i}} \left(\frac{\mathsf{MTTF}_{i}}{\mathsf{MTTF}_{i} + \mathsf{MTTR}_{i}} \right)$$

• and M_i is the bottleneck.

Bottleneck

- The system is not in steady state.
- An increasing amount of inventory accumulates in the buffer upstream of the bottleneck.
- A finite amount of inventory appears downstream of the bottleneck.

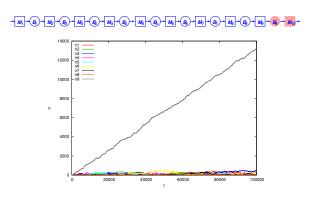
Example 1

$$-\underbrace{M_1}_{}+\underbrace{R_2}_{}+\underbrace{M_2}_{}+\underbrace{R_3}_{}+\underbrace{M_3}_{}+\underbrace{R_3}_{}+\underbrace{M_4}_{}+\underbrace{R_3}_{}+\underbrace{R_4}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R_5}_{}+\underbrace{M_5}_{}+\underbrace{R$$

- Parameters: $r_i = .1, p_i = .01, i = 1, ..., 9; r_{10} = .1, p_{10} = .03.$
- Therefore, $e_i = .909, i = 1, ..., 9; e_{10} = .769.$

Infinite-Buffer Lines

Example 1



• If any one machine fails, or takes a very long time to do an operation, *all* the other machines must wait.

- \bullet Therefore the production rate is usually less possibly much less
 - than the slowest machine.

Constant, equal operation times, unreliable machines

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

- Assumption: Failure and repair times are geometrically distributed.
- Define $p_i = \tau/\mathsf{MTTF}_i = \mathsf{probability}$ of failure during an operation.
- Define $r_i = \tau/\text{MTTR}_i$ probability of repair during an interval of length τ when the machine is down.

Production Rate

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

Buzacott's Zero-Buffer Line Formula:

Let k be the number of machines in the line. Then

$$P = \frac{1}{\tau} \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}} = \frac{1}{\tau} \frac{1}{1 + \sum_{i=1}^{k} \frac{MTTR_i}{MTTF_i}}$$

Production Rate

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

Same as the earlier formula when k = 1.

• The isolated production rate of a single machine M_i is

$$\frac{1}{\tau} \left(\frac{1}{1 + \frac{p_i}{r_i}} \right) = \frac{1}{\tau} \left(\frac{r_i}{r_i + p_i} \right).$$

Proof of formula

- Let τ (the operation time) be the time unit.
- Approximation: At most, one machine can be down.
- Consider a long time interval of length $T\tau$ during which Machine M_i fails m_i times (i = 1, ... k).
- Without failures, the line would produce T parts.

Some machine down

Proof of formula

• The average repair time of M_i is τ/r_i each time it fails, so the total system down time is close to

$$D\tau = \sum_{i=1}^{k} \frac{m_i \tau}{r_i}$$

where D is the number of operation times in which a machine is down.

Proof of formula

• The total up time is approximately

$$U\tau = T\tau - \sum_{i=1}^{k} \frac{m_i \tau}{r_i}$$

 where *U* is the number of operation times in which all machines are up.

Proof of formula

- Since the system produces one part per time unit while it is working, it produces U parts during the interval of length $T\tau$.
- Note that, approximately,

$$m_i = p_i U$$

because M_i can only fail while it is operational.

Proof of formula

• Thus,

$$U\tau = T\tau - U\tau \sum_{i=1}^{k} \frac{p_i}{r_i},$$

or,

$$\frac{U}{T} = E_{ODF} = \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}}$$

 p_i and r_i and p_i/r_i

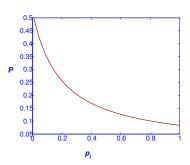
and

$$P = \frac{1}{\tau} \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}}$$

- Note that P is a function of the $ratio \ p_i/r_i$ and not p_i or r_i separately.
- The same statement is true for the infinite-buffer line.
- However, the same statement is *not* true for a line with finite, non-zero buffers.

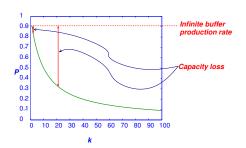
P as a function of p_i

All machines are the same except M_i . As p_i increases, the production rate decreases.



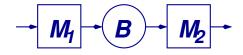
P as a function of p_i

All machines are the same. As the line gets longer, the production rate decreases.



Finite-Buffer Lines

- Difficulty:
 - $\star\,$ No simple formula for calculating production rate or inventory levels.
- Solution:
 - * Simulation
 - * Analytical approximation
 - * Exact analytical solution for two-machine lines only.

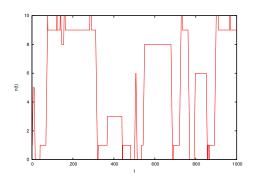


- A simple production line consisting of two machines and one in-process inventory buffer, making discrete parts.
- Both machines have unit operation time.
- Both machines are unreliable with geometric uptimes and downtimes. The parameters are
 - * $MTTR_1 = 1/r_1$, $MTTR_2 = 1/r_2$
 - * $\mathsf{MTTF}_1 = 1/p_1$, $\mathsf{MTTF}_2 = 1/p_2$
- The buffer can hold a maximum of N parts.
- The first machine is never starved; the last machine is never blocked.

- The *efficiency* e_i of Machine i is the fraction of time the machine is operational, *not counting idle time* .
- Because the time unit is the operation time, the efficiency of a machine is the same as its production rate in isolation, i.e., not counting idle time.
- The efficiency of Machine i is given by

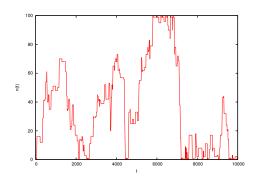
$$e_i = \frac{\mathsf{MTTF}_i}{\mathsf{MTTR}_i + \mathsf{MTTF}_i} = \frac{\mathsf{MTTF}_i}{\mathsf{MTBF}_i} = \frac{r_i}{r_i + p_i}$$

- The next four slides show simulation results. They show how the buffer level (n(t)) varies with time t as a result of random failures and repairs of the two machines.
- Compare the slides in order to relate the buffer level behavior to the machine parameters.
- Think about the average buffer level.



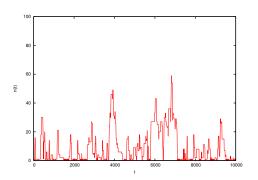
$$MTTR_i = 10, MTTF_i = 100, i = 1, 2; N = 10$$

 $(r_1 = .1, p_1 = .01, r_2 = .1, p_2 = .01)$



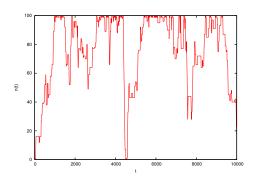
$$MTTR_i = 10, MTTF_i = 100, i = 1, 2; N = 100$$

 $(r_1 = .1, p_1 = .01, r_2 = .1, p_2 = .01)$



$$MTTR_i = 10, i = 1, 2, MTTF_1 = 50, MTTF_i = 100; N = 100$$

 $(r_1 = .1, p_1 = .02, r_2 = .1, p_2 = .01)$



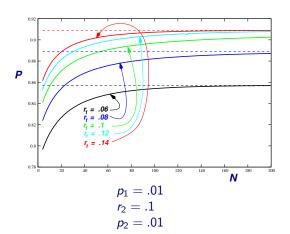
$$MTTR_i = 10, i = 1, 2, MTTF_1 = 100, MTTF_i = 50; N = 100$$

 $(r_1 = .1, p_1 = .01, r_2 = .1, p_2 = .02)$

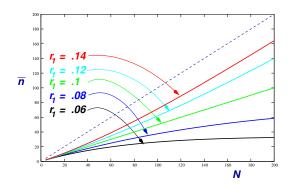
Scenario:

- We are designing a line. We have already chosen the second machine.
- Two decisions are left: the choice of the first machine and the size of the buffer,
- Five vendors produce versions of the first machine.
 - * All have the same operation time as the second machine.
 - * All have the same MTTF.
 - * They differ in MTTR. The vendors put different amounts of design effort into making the machines easy to repair.

Production rate vs. Buffer Size



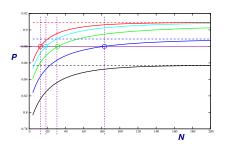
Average Inventory vs. Buffer Size

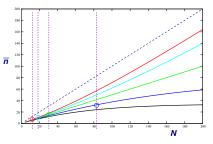


60/72

Inventory and the Propagation of Variability

Two-Machine Line Behavior

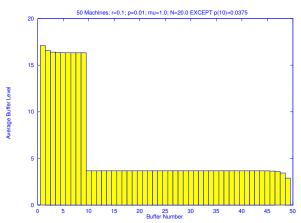




Problem: Select M_1 and N so that P = .88.

Solution:

<i>r</i> ₁	N	īn
.14	13	7.0819
.12	19	10.1153
.10	32	16.0000
.08	82	32.2112



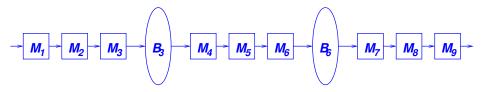
Effect of a bottleneck. Identical machines and buffers, except for M_{10} .

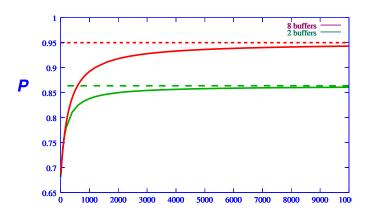
Which has a higher production rate?

- 9-Machine line with two buffering options:
 - * 8 buffers equally sized; and

$$-\downarrow M_1 - B_1 + M_2 - B_2 - M_3 - B_3 - M_4 + B_4 - M_5 - B_5 - M_6 - B_5 - M_7 - B_7 - M_6 - B_5 - M_9 - B_7 - M_9 - B_8 - M_9 - M$$

* 2 buffers equally sized.





Total Buffer Space

Optimal buffer space distribution

- Design the buffers for a 20-machine production line.
- The machines have been selected, and the only decision remaining is the amount of space to allocate for in-process inventory.
- The goal is to determine the smallest amount of in-process inventory space so that the line meets a production rate target.
- The common operation time is one operation per minute.
- The target production rate is .88 parts per minute.

• Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).

- Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR = 10.5 minutes (P = .905 parts per minute).

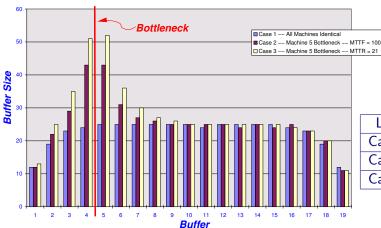
- Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR = 10.5 minutes (P = .905 parts per minute).
- Case 3 Like Case 1 except Machine 5. For Machine 5, MTTF = 200 and MTTR = 21 minutes (P = .905 parts per minute).

Are buffers really needed?

Line	Production rate with no buffers,	
	parts per minute	
Case 1	.487	
Case 2	.475	
Case 3	.475	

Yes. These numbers came from a zero-buffer formula.

Solution



Line	Space
Case 1	430
Case 2	485
Case 3	523

- Observation from studying buffer space allocation problems:
 - * Buffer space is needed most where buffer level variability is greatest!

Other issues

- Setup changes
 - * Controllable disruption
 - * Reduces production time and creates inventory.
- Deterministic scheduling and MRP
 - * Recalculation required when an unanticipated event occurs
 - * This can cause instability and confusion