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Primitive tools to cut and scrape go

back at least 150,000 yrs

5 axis machining of aluminum
Machining tutorial:

1

http://electron.mit.edu/~gsteele/mirrors/www.nmis.org/EducationTraining/machineshop/mill/intro.html


Ancient Tools & Structures

Stone work in Cuzco Peru - Sacsayhuaman
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Modern Machining Practice

5 axis High speed

Complex parts New Configurations
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Why machining is still 

important

Kalpakjian & Schmid 5



Why machining is still 

important

machining

Kalpakjian & Schmid 6



Compared to Additive

Ref Lienke et al, U. Paderborn, Germany (DIN German Standard for part tolerance)
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What prevents machining from 

being a fully digital technology?

1. Large cutting forces require

• Secure fixturing

• Robust tools & tool holders

• Limiting geometrical access

• Requiring repeated fixturing
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Basic Mechanics Issues

– Shear strain

– Power, plastic work

– Friction, forces

– Temperature rise

– Heat, Tool materials, Rate limits
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Basic Machining Mechanism

Eugene Merchant’s  model for orthogonal cutting

Video on plastic deformation in machining10



Basic Machining Mechanism

Shear takes place in
a narrow zone near
the tool tip at angle ,
the tool has rake angle , 
the resulting shears is 
From geometry, 

= cot() + tan ( - )

 becomes large for small 
→small or negative 
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Observation for Video
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Basic Machining Mechanism

Kalpakjian & Schmid
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Basic Machining Mechanism

Friction?
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Basic Machining Mechanism

Approximate scaling:

us ~ H (Hardness)
t0

tc



Shear plane Shear angle

Tool

V

Chip

Workpiece



+-

Rake
angle

Fc

If friction work uf

is about 0.25 to 0.5 of up (Ref Cook)

Then specific cutting work (the total)
“us” is about 9/16 x Hardness “H” 

We will use tabulated values for specific energy
See tables 21.2 for cutting and Table 26.2 for grinding
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Cutting forces

Fc = cutting force
N  = normal force
F  = friction force
R  = resultant force
Ft = thrust force
= friction coef
 = friction angle
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Ref. Groover

The Merchant Equation
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Ref. Groover

The Merchant Equation
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Ref. Kalpakjian & Schmid

The Thrust Force
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Specific energy, uS

For comparison see Table 26.2 for grinding 20



Specific energy, uS

For comparison see Table 26.2 for grinding

Cutting

Grinding
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See Kalpakjian & Schmid

Chapter 26: Abrasive Machining

Surface Grinding
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Hence we have the approximation;

Power ≈ us X MRR

MRR is the Material Removal Rate or d(Vol)/dt

Since Power is
P = Fc * V

and MRR can be written as,
d(Vol)/dt = A * V

Where A is the cross-sectional area of the undeformed chip, we can get 
an estimate for the cutting force as,

Fc ≈ us  A

Note that this approximation is the cutting force in the cutting direction.

Approximations:
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Basic Machining Processes

Horizontal Slab milling Face milling End milling

Cutter Arbor

Arbor

Spindle

Spindle

End mill

Shank

Turning

Milling

* Source: Kalpakjian, “Manufacturing Engineering and Technology”

*

* Grinding

Grinding
wheel

D
Grains

Workpiecev

V
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Cutter Geometries

Form Tool

Face
Mill

End Mills
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Cutting Force Directions in Milling

Fp

Fcn

Fc

Fcn

Fp

Fc

Fcn

Fc

Fp

Fcn

Fp

Fc

Fc ~ H  Ac

(Tangential Cutting Force ~ 

Chip Cross-section  Hardness) 26



Face Milling
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Feed per Tooth and MRR

f = feed per tooth (m)
w = width of cut (m)

v (m/s)

W = rotational rate (rpm)

Consider the workpiece moving into the cutter at rate “v”. In travel time t’ the 
feed is v t’. The time for one rotation is t’ = 1/W. The travel for one tooth is 

1/4W. Hence the feed per tooth is f = v/4W. In general, a cutter may have “N” 

teeth, so the feed per tooth is

f = v / NW
The material removal rate (MRR) is,

MRR = v w d = f d x wNW

where “d” is the depth of the tool into the workpiece.

Top view of face milling
With 4 tooth cutter

Side view

d

Force ≈ f d us
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Ex) Face milling of Al Alloy

w

d =D

vw

N = 4 (number of teeth)
D = 2” (cutter diameter)

Let w = 1” (width of cut), d=0.1” (depth of cut)
f = 0.007” (feed per tooth), 
vs = 2500 ft/min (surface speed; depends on 
cutting tool material; here, we must have a 
coated tool such as TiN or PCD) 

The rotational rate for the spindle is
W = vs / pD  = 4775 rpm

Now, we can calculate vw, workpiece velocity,
f = vw / N W => vw= 134 [in/min]

Material removal rate, MRR = vw*w*d = 13.4 [in3/min] 
Power requirement, P = us*MRR = 5.36 [hp]
Cutting force / tooth, F ~ us*d*f = 111 [lbf]

us from Table 21.2 (20.2 ed 4); Note 1 [hp min/in3] = 3.96*105 [psi]
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Ex) Turning a stainless steel bar

f

D=1”

d

Tool

Recommended feed = 0.006” (Table 23.4 (22.4))
Recommended surface speed = 1000 ft/min

W =    1000 ft/min     = 3820 rpm
p*1” * 1ft/12”

Material removal rate, MRR = 0.1*0.006*(p*1*3820) = 7.2 [in3/min] 

Power requirement, P = us*MRR = 1.9*7.2 = 13.7 [hp]

Cutting force / tooth, F ~ us*d*f = (1.9*3.96*105)*(0.1*0.006) 

= 450 [lbf]

us from Table 21.2 (20.2 ed 4); Note 1 [hp min/in3] = 3.96*105 [psi]

Let d = 0.1”
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Consequences of large forces

• Secure fixturing

• Robust tools & tool holders

• Limiting geometrical access

• Requiring repeated fixturing

• Heat Rise, Cutting tool requirements

32



Temperature Rise in Cutting

Adiabatic Temperature Rise: 
r c DT = uS

Note : uS ~ H, Hardness
DTadiabatic ≈ ½ Tmelt (Al & Steel)

Interface Temperature: 

DT = 0.4 (H / r c)(v f / )0.33

v = cutting speed
f = feed
 = thermal diffusivity of workpiece
Note v f /  = Pé = convection/conduction

Typical temperature distribution 
in the cutting zone

* Source: Kalpakjian, and Schmidt 5th ed

*

* Reference: N. Cook, “Material Removal Processes” 33



Effect of temperature on 

Hardness
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Tool Life

Frederick Winslow Taylor
-1856 to 1915

•Tool life
•Scientific management

Note C = V for T = 1 min.
range for n is 0.08 to 0.7

See text Ch 21
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Optimum cutting speed range
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New Tooling Materials and 

their effect on Productivity

100 to 0.5 in 110 years → ~ 5%/yr
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Limits to MRR in Machining
 Spindle Power – for rigid, well supported parts

 Cutting Force – may distort part, break delicate 
tools

 Vibration and Chatter – lack of sufficient rigidity in 
the machine, workpiece and cutting tool may result 
in self-excited vibration

 Heat – heat build-up may produce poor surface 
finish, excessive work hardening, “welding”; can be 
reduced with cutting fluid

 Economics - tool changes

See Video on Rate Limits In Machining
38



High speed Machining and Assembly

• High Speed Machined aluminum parts are replacing built-up 

parts made by forming and assembly (riveting) in the aerospace 

industry. The part below was machined on a 5-axis Makino 

(A77) at Boeing using a 8-15k rpm spindle speed, and a feed of 

240 ipm vs 60 ipm conventional machining. This part replaces a 

build up of 25 parts. A similar example exists for the F/A-18 

bulkhead (Boeing, St. Louis) going from 90 pieces (sheetmetal 

build-up) to 1 piece. High speed machining is able to cut walls to 

0.020” (0.51mm) without distortion. Part can be fixtured using 

“window frame” type fixture.

MRR = f d * N W w
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High Speed Machining

https://www.youtube.com/watch?v=3YzAl29Ag78
40

https://www.youtube.com/watch?v=3YzAl29Ag78


Machine tool configurations

• Machine tool

number of axes, spindles, serial and parallel 
configurations

• Cutter geometry

Form tool, cutter radius, inserts, tool changers

• Software

flexibility, geometrical compensation, “look ahead” 
dynamics compensation

41



Column

Base

Head

Table

Saddle

Knee

*

* Source: Kalpakjian, “Manufacturing Engineering and Technology”

Various Machine Tool Configurations

42



* Source: Kalpakjian, “Manufacturing Engineering and Technology”

Various Machine Tool Configurations

43
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Some Machining 

Developments

• 5 Axis machining

• Diamond turning

• Micro-machining

• Fast tool server

• Cryogenic cooling
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5 Axis Machining

• David Kim
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5 axis machining demos

http://www.youtube.com/watch?v=yU_RHiHudag&feature=related

http://www.youtube.com/watch?v=0u2xC60-oMI&NR=1

http://www.youtube.com/watch?v=yU_RHiHudag&feature=related
http://www.youtube.com/watch?v=0u2xC60-oMI&NR=1
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Diamond Turning

Optical surfaces (400-700nm) surface finish ~1nm, temp control ±0.01F

Bob Donaldson ?
LLNL
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Diamond Turning

Empire Precision

Davies et al
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Micro machining

Diamond turning
& micro-milling 
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Micro machining
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Micro Machines & Factories

Micro machines

Micro Factory developed at Mech Eng Lab AIST Japan
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MS Thesis Thilo Grove Part available on Alibaba
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Hexapod Milling Machines

Tool

Linear actuator

Stewart 
Platform

*

* Source: http://macea.snu.ac.kr/eclipse/background/background.html

Hexapod machining center
(Ingersoll, USA)

Schematics

http://macea.snu.ac.kr/eclipse/background/background.html
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Institut für Werkzeugmaschinen und Fertigung
Hexaglide from Zurich (ETH) 

www.iwf.mavt.ethz.ch/

http://www.iwf.mavt.ethz.ch/


Fast Tool Servo
http://web.mit.edu/pmc/www/index.html

Ref D. Trumper 56
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Rotary Fast Tool Servo Machine for Eyeglass Lenses

D. Trumper & students
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Tool at end of arm rotates about vertical axis
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Asymmetric Turning Operation

• Spectacle lenses

• Contact lenses

• Human lens implants

• Elements for laser vision 

correction surgery

• Camera lenses

• Image train elements in 

semiconductor processing

• Camshafts

• Not-round pistons
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Fast Tool Servo State of the Art

Lu/Trumper

Bandwidth 23 kHz

Stroke 30 m

RMS tracking error:
1.7 nm

Peak acceleration:
500g
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Diamond Turning Machine Cross Section
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Satisloh 

http://www.satisloh.com/usa-canada/ophthalmic/generating/vft-orbit/

http://www.satisloh.com/usa-canada/ophthalmic/generating/vft-orbit/


63

Cryogenic Machining
http://www.youtube.com/watch?v=GFOXbb7P2jc

http://www.youtube.com/watch?v=GFOXbb7P2jc
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Cryogenic Cutting Tools

®

CYCLO CUT ® Brand
•Cryogen to the cutting edge

•Solid carbide end mills 

and drills

•Index end mills, 

face mills, turning 

and boring tools

CHIP

FLOW

MAG 

Cryogenic

Vented, 

Heat-sink 

application

-321°F
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Cryogenic Cutting Tools

®

CYCLO CUT ® Brand
•Cryogen to the cutting edge

•Solid carbide end mills 

and drills

•Index end mills, 

face mills, turning 

and boring tools

CHIP

FLOW

LN2 through tool
77K (-321 °F)

$0.06/liter

Claims:
30% - 50% higher feed rate
(up to 2X)
60% tool life
No cleaning of part
Easy disposal



Historical Development of

Machine Tools

Henry Maudslay, and screw cutting lathe circa 1797
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Early paper on

cutting 

mechanics

Prof Nate CookProf Milt Shaw

M.I.T., LMP
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* Source: Reintjes, “Numerical Control 1991”

NC machine tool developed at MIT mid 1950’s
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Readings

 Kalpakjian & Schmid Machining chapters 

are extensive: Ch 21-27

 Design for Machining handout

 AM tolerances paper available but not 

required (i.e. Lienke et al U. Paderborn)
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