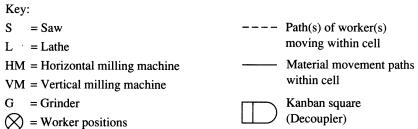

TPS Cell: Analysis and Redesign


- 1. Work flow (part separate from worker)
- 2. Standard work (highly specified)
- 3. Production rate flexibility

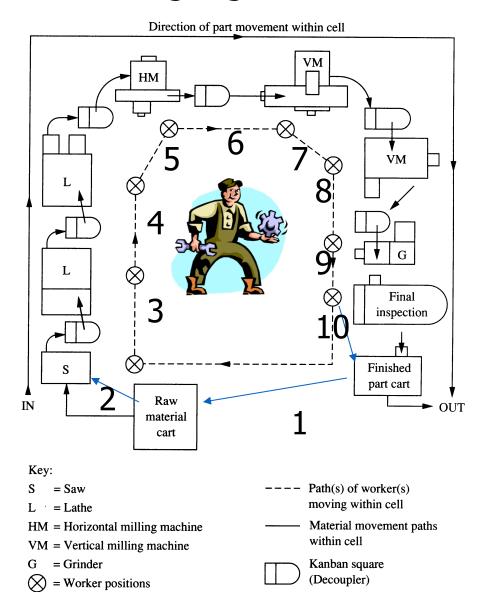
Ref: J T. Black Ch 4

Machining Cell

Operator moves part from machine to machine (including "decouplers") by making traverse around the cell.

ETCTIDE 4.3

Cell Features

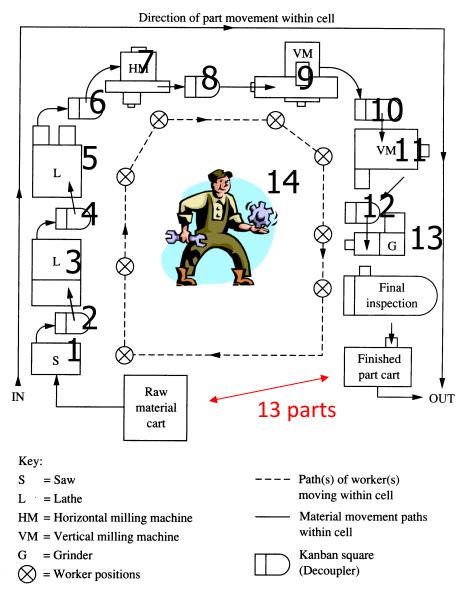

- "Synchronized", sequential production
- Operator decoupled from individual machines
- Operator integrated into all tasks
- Goal: single piece Flow
- Best with single cycle automatics, but can be done manually too

See Brigg & Stratton Video

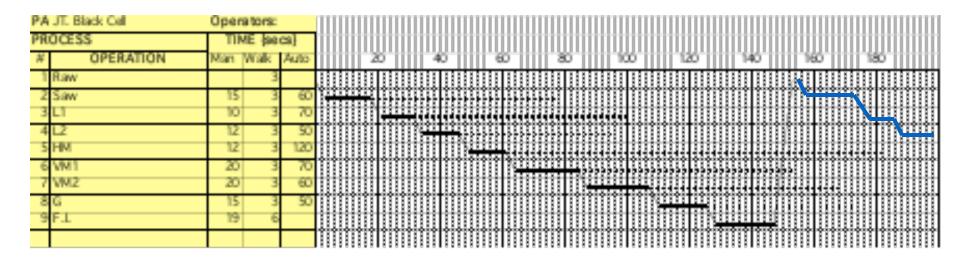
Walking segments - 10

Machining Cell

segment		Manual (Sec)	Walk to (Sec)	Machine (Sec)
1	Raw		3	
2	Saw	15	3	60
3	L1	10	3	70
4	L2	12	3	50
5	НМ	12	3	120
6	VM1	20	3	70
7	VM2	20	3	60
8	G	15	3	60
9	F.I.	19	3	
10	Finish part		3	
	Totals	M+W	= 153	490



ETCTIDE 4.5


Machining Cell

	Manual (Sec)	Walk to (Sec)	Machine (Sec)
Raw		3	
Saw	15	3	60
L1	10	3	70
L2	12	3	50
НМ	12	3	120
VM1	20	3	70
VM2	20	3	60
G	15	3	60
F.I.	19	3 + 3	
Totals	M+W	= 153	490

Parts in the cell ~ 14

Standard Work for Cell

Cell produces one part every 153 sec

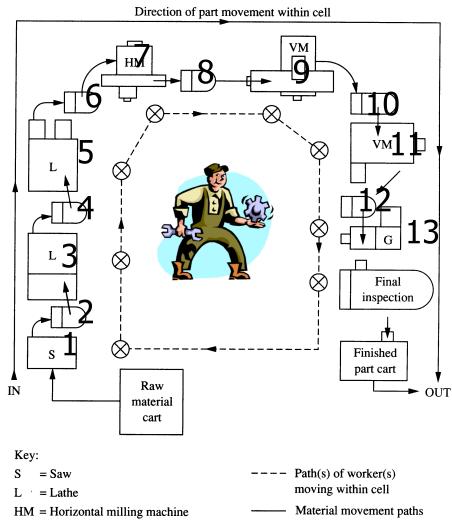
Note: machine time Max (MTj) < cycle time CT

i.e. 120+12 < 153

TPS Cell

1. Production rate = λ

$$\lambda = \frac{1part}{153 \text{ sec}} = 23.5 \text{ parts/hr}$$


- 2. WIP = L?
- 3. Time in the system = W?

Machining Cell

Saw	3+15	+ 153
#1 decoupler	1.5	+153
L1	1.5+ 10	+153
Grind	1.5+ 15	+153
Manual and walk	19+3	out
	150	153X13 =1989

1989 + 150 = 2139

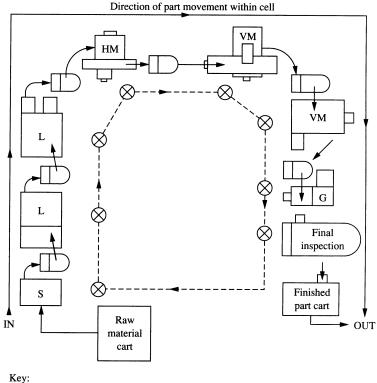
Number of round trips; 13

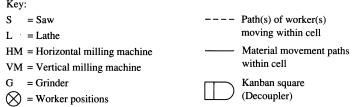
VM = Vertical milling machine

G = Grinder

 \bigotimes = Worker positions

within cell


Kanban square (Decoupler)

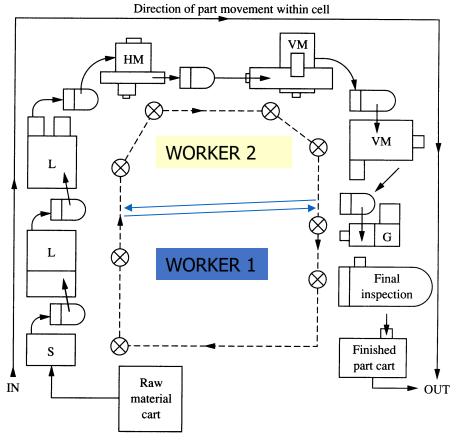

By Little's Law

$$L = (13 + 1) X (150/153) +$$
 $13 X (3/153) = 13.98 parts$

rate, $\lambda = 1/153$ parts/second

W = 153 X 13.98 = 2139 sec

EICTIDE 4.3


TPS Cell

Increase production rate:

- a) add additional worker to cell
- b) modify machine bottlenecks

	Manual (Sec)	Walk to (Sec)	Machine (Sec)
Raw		3	
Saw	15	3	60
L1	10	3+3	70
L2	12	3	50
НМ	12	3	120
VM1	20	3	70
VM2	20	3+3	60
G	15	3	60
F.I.	19	3 + 3	
Totals	M+W	= 159	490
Work 1		80	
Work 2		79	

To increase production rate add 2nd worker

Key:	
S = Saw	Path(s) of worker(s)
L = Lathe	moving within cell
HM = Horizontal milling machine	Material movement paths
VM = Vertical milling machine	within cell
G = Grinder	Kanban square (Decoupler)
= Worker positions	(Decoupler)

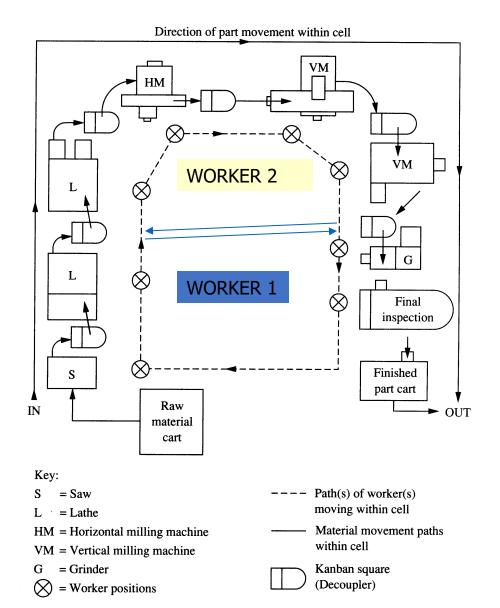
EICTIDE 4.5

What is the production rate for this new arrangement?

Check max(MTj) < CT

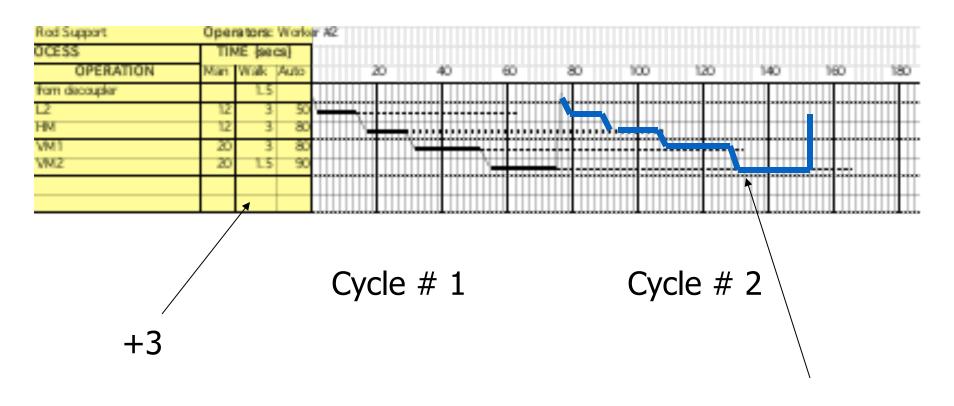
Worker 1; 80 = 80

Worker 2; 12+120 > 79


One part every 132 seconds

We are limited by the HM (horizontal mill)

$$\lambda = \frac{1part}{132 \text{ sec}} = 27.3 \text{ parts/hr}$$


Can we shift work off of the HM to reduce the cycle time?

	Manual (Sec)	Walk to (Sec)	Machine (Sec)
Raw		3	
Saw	15	3	60
L1	10	3+3	70
L2	12	3	50
НМ	12	3	120
VM1	20	3	7080
VM2	20	3+3	60
G	15	3	60
F.I.	19	3 + 3	
Totals	M+W	= 159	490
Work 1		80	
Work 2		79	

EICTIDE 4.5

Standard Work for Worker #2

Operator waiting On machine

What is the new production Rate?

Check max(MTj) < CT

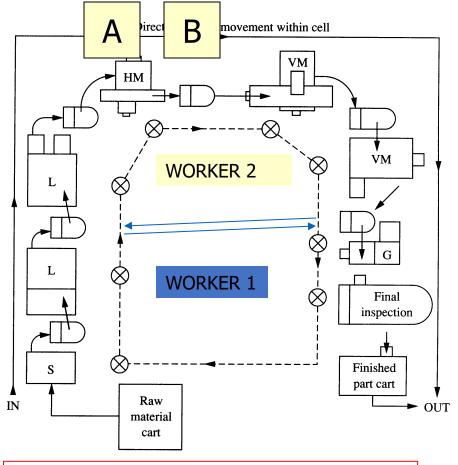
Worker 1; 80 = 80

Worker 2; 110 > 79

Hence Worker #2 will be waiting on Vertical Mill #2

What is the new production Rate?

The new production rate is;


one part every 110 sec

- Pro and Cons; Worker "idle", can't speed up by adding additional worker
- Design for flexibility make;

$$\lambda = \frac{1part}{110 \text{ sec}} = 32.7 \text{ parts/hr}$$

	Manual (Sec)	Walk to (Sec)	Machine (Sec)
Raw		3	
Saw	15	3	60
L1	10	3+3	70
L2	12	3	50
НМ	12	3	120
VM1	20	3	70
VM2	20	3+3	60
G	15	3	60
F.I.	19	3 + 3	
Totals	M+W	= 159	490
Work 1		80	
Work 2		79	

Alternative solution add 2 HM's

$$\lambda = \frac{1part}{90 \text{ sec}} = 40 \text{ parts/hr},$$

S = Wo Almost double! upler)

TPS cell summary

- 1. Original cell 23.5 parts/hr
- 2. Additional worker- 27.3 parts/hr
- 3. Shift work- 32.7 parts/hr
- 4. Add additional HM 40 parts/hr