

Introduction to "Exergy"

2.83/2.813 T. G. Gutowski 2008

Readings and Handouts

- 1. Ch.2 "Thermodynamics Revisited" Jakob de Swaan Arons
- 2. Ch.10 "Exergy" Norio Sato
- 3. Appendix, tables of standard chemical exergy, Szargut
- 4. Derivation of Mixing Entropy

Why available work?

- 1. rigorous framework
- 2. based on 2nd law (lost Vs transformed)
- 3. can account for materials energy potential (credit)
- 4. allows combined accounting of fuel and non-fuel materials
- 5. other advantages when dealing with waste heat (quality of waste heat)

Outline

- Thermodynamics Review
- Exergy & Exergy Accounting
- Physical Exergy
 - hot & cold water mixing
- Chemical Exergy
 - chemical reactions; burning carbon, and oxidizing aluminum
 - iron ore processing
- 5 Homeworks

Energy from 1st Law

- U = internal energy of molecules and atoms
- E = U + K.E. + P.E. = U + $\frac{1}{2}mv^2$ + mgz
- "isolated" systems $\Delta E=0$, or $\Delta U=0$ (v=const, z=const)
- "closed" system $\Delta U = Q_{in} W_{out}$
- "open system" can exchange energy and mass

The 1st Law

$$\Delta U = Q_{in} - W_{out}$$
$$dU = \delta Q_{in} - \delta W_{out}$$

$$\oint dQ - \oint dW = 0$$

Availability

"The First Law states that in every cyclic process either work is converted into heat or heat is converted into work. In this sense it makes no distinction between work and heat except to indicate a means of measuring each in terms of equivalent units. Once this technique of measurement is established, work and heat become entirely equivalent for all applications of the First Law."

Availability

 "The Second Law, on the other hand, marks the distinction between these two quantities by stating that heat from a single source whose temperature is uniform cannot be completely converted into work in any cyclic process, whereas work from a single source can always be completely converted into heat."

Availability

"The efforts of the engineer are very largely directed toward the control of processes so as to produce the maximum amount of work, or so as to consume the minimum amount of it. The success of these efforts can be measured by comparing the amount of work produced in a given process with the maximum possible amount of work that could be produced in the course of a *change of state* identical with that which occurs in the process." Keenan, 1941

State Variables

 $\oint dU = 0$

 $\int d\phi = \phi_2 - \phi_1$

 $\oint \frac{dQ}{T} = 0$ $\oint d(U + PV) = 0$

State Variables

Enthalpy H=U+PV

Here the Work done is

 $W = P(V_2 - V_1)$

H = U + PV

The quantity in parenthesis is Enthalpy

The First Law can be written as

$$Q_{in} = \Delta H$$

 $Q = (U+PV)_2 - (U + PV)_1$

Constant Pressure Equilibrium Process

Open flow system

Figure 1 Changes in steady-state flow.

Energy Balance for an Open System

Eq 1

The Second Law

- ΔW and ΔQ are not equivalent
- something gets lost

The Second Law

$$\oint \frac{dQ}{T} = \frac{Q_{in}}{T_H} - \frac{Q_{out}}{T_L} = 0 \qquad \eta = \frac{T_H - T_L}{T_H}$$

Entropy: State Variable

$$dS = \frac{dQ}{T}$$

 $\oint dS = 0 \qquad \text{Reversible process}$ $\oint dS \ge 0 \qquad \text{Real process}$

Entropy Balance for an Open System

Eq 2

Consider the Work

...to bring the system from the reference environment at standard conditions, T_o , p_o to the state at T, p

From EQ 1 & 2

$$\dot{m}\left(\Delta H + \frac{\Delta u^2}{2} + g\Delta z\right) - \dot{Q}_{out} + \dot{W}_{in} = 0$$

$$\dot{m}\Delta S - \frac{\dot{Q}_{out}}{T_o} + \dot{S}_{generated} = 0$$

$$\dot{W} = \dot{m} \left(\Delta H + \frac{\Delta u^2}{2} + g \Delta z \right) - \dot{m} T_o \Delta S + T_o \dot{S}_{generated}$$

Work to bring system from P_o , T_o to P, T

Minimum Work

$$W_{\min} = \frac{W_{rev}}{\dot{m}} = \Delta H - T_o \Delta S$$

= $(H_{p,T} - H_{p_o,T_o}) - T_o (S_{p,T} - S_{p_o,T_o})$

Minimum work to bring system from p_o , T_o to p, T

where (for u=0, z=0):

This is the <u>minimum</u> amount of work to bring the system from the reference environment at standard conditions, T_o , p_o to the state at T, p

Standard ref. values $T_0 = 298.2^{\circ} K$, $P_o = 101.3 kPa$

... the <u>maximum</u> amount of work that can be obtained from a system in reference to the environment at standard conditions, T_o , P_o

Standard ref. values $T_0 = 298.2^{\circ} K$, $P_o = 101.3 kPa$

See if you can derive this as a homework problem

Exergy

Exergy

Definition of Exergy "B"

"Exergy is the amount of work obtainable when some matter is brought to a state of thermodynamic equilibrium with the common components of the natural surroundings by means of reversible processes, involving interaction only with the above mentioned components of nature" [Szargut et al 1988].

Exergy Accounting

 $B_{in} - B_{out} = B_{lost}$

Example: mixing hot and cold water

1st Law:
$$H_1 + H_2 = H_3$$

recall; ΔH = ∫m C_p ΔT

Example: mixing hot and cold water

To calculate the 2nd law property; $\Delta B = \Delta H - T_0 \Delta S$ $T_{ref} = 25^{\circ}C$ Pressure = constantWe need to know the temperature dependence of enthalpy and entropy

temperature and pressure dependence of H and S

$$dH = c_p dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_p \right] dP$$

$$dS = \frac{c_p}{T} dT - \left(\frac{\partial V}{\partial T}\right)_p dP$$

for constant pressure

calculating ΔH -T₀ ΔS

$$H_1 - T_o S_1 = C_p (75) - 298.2C_p \ln \frac{373.2}{298.2} = 8.1C_p$$

$$H_2 - T_o S_2 = C_p (-25) - 298.2C_p \ln \frac{273.2}{298.2} = 1.1C_p$$

$$H_3 - T_o S_3 = 2C_p (25) - 2x298.2C_p \ln \frac{323.2}{298.2} = 2C_p$$

$B_{in} - B_{out} = B_{lost}$

$$B_{lost} = (H_2 - T_o S_2) + (H_1 - T_o S_1) - (H_3 - T_o S_3)$$

$$B_{lost} = (8.1 + 1.1 - 2)C_p = 7.2C_p$$

Figure 2 Flow diagram for the mixing of a hot and a cold stream.

Figure 3 Exergy flow diagram or Grassmann diagram for the example of Fig. 2.

Ref Sussmann '80 and de Swaan Arons '04

Physical and Chemical Exergy

- $B = B^{ph} + B^{ch}$
- B^{ph}(T=T_o, p=p_o) =0

 this is the "restricted dead state"

•
$$B^{ch}(\mu = \mu_o) = 0$$

• when $B = B^{ph} + B^{ch} = 0$

- this is the "dead state"

Chemical Reactions

stoichiometric mass balance $v_a R_a + v_b R_b + \dots \rightarrow v_j \Pi_j + v_k \Pi_k + \dots$

exergy "balance" $v_a b_{R_a} + v_b b_{R_b} + \dots - v_j b_{\Pi_j} - v_k b_{\Pi_k} = B_{lost}$

where exergy b is given in kJ/mole

The maximum work you can get out of one mole of carbon is

$$\frac{394.4 \text{ kJ}}{\text{mole of carbon}} = 32.9 \text{ MJ}$$

606 Combustion

		M	Δh^{a}	Δg°	Δs^{0}	$\frac{\Delta h^{o} - \Delta g^{o}}{\Delta a^{o}}$
Fuel	Formula	$\frac{kg}{kmol}$	$\frac{MJ}{kg}$	$\frac{MJ}{kg}$	$\frac{kJ}{kgK}$	
Hydrogen	H ₂	2.016	-120.0	-113.5	-22.0	+5.8
Carbon (graphite)	C	12.011	-32.8	-32.9	0.2	-0.2
Methane	CH ₄	16.043	-50.0	-49.9	-0.3	+0.2
Acetylene	C_2H_2	26.038	-48.3	-47.1	-3.7	+2.4
Ethylene	C_2H_4	28.054	-47.2	-46.9	-1.1	+0.7
Ethane	C_2H_6	30.07	-47.5	-48.0	1.5	-1.0
Propylene	C ₃ H ₆	42.081	-45.8	-45.9	0.4	-0.3
Propane	C_3H_8	44.097	-46.4	-47.1	2.3	-1.5
n-Butane	C4H10	58.12	-45.8	-46.6	2.7	-1.7
n-Pentane	C5H12	72.15	-45.4	-46.3	2.9	-1.9
Benzene	C ₆ H ₆	78.114	-40.6	-40.8	0.5	-0.4
n-Hexane	C6H14	86.18	-45.1	-46.1	3.1	-2.0
n-Heptane	C7H16	100.21	-45.0	-45.9	3.2	-2.1
n-Octane	C8H18	114.232	-44.8	-45.8	3.3	-2.2
Isooctane	C8H18	114.232	-44.7	-45.8	3.7	-2,4
n-Nonane	C9H20	128.26	-44.7	-45.7	3.4	-2.2
n-Decane	C10H22	142.29	-44.6	-45.7	3.5	-2.3
Carbon monoxide	CO	28.01	-10.1	-9.2	-3.1	+10.1
Methanol	CH ₃ OH	32.042	-21.1	-21.5	1.4	-1.9
Ethanol	C2H5OH	46.069	-27.8	-28.4	2.1	-2.2
Ethylene glycol	(CH ₂ OH) ₂	62.07	-17.1	-18.6	5.1	-8.1
Sulfur	S	32.064	-9.2	-9.3	0.3	-0.9
Sulfur monoxide	SO	48.063	-6.3	-5.8	-1.6	+8.5

TABLE 31.7. Values of enthalpy, Gibbs free energy, and entropy of combustion of fuels at standard temperature, $T_0 = 25^{\circ}$ C, and pressure, $p_0 = 1$ atm.^a

Source: Data from R. C. Weast, editor, CRC Handbook of Chemistry and Physics, 66th ed., CRC Press, Boca Raton, Fla., 1985.

"Each constituent before and after combustion is assumed to be in its ideal-gas state at To and Po.

Note that ∆g°≈ ∆h° (lower heating value) for fuels $^{\circ} \eta \nabla$

> Ref Gyftopolous & Beretta

Example: Oxidation of Aluminum

$$2Al + \frac{3}{2}O_2 \rightarrow Al_2O_3$$

$$2 \times 888.4 \frac{kJ}{mole} + \frac{3}{2} \times 3.97 \frac{kJ}{mole} - 200.4 \frac{kJ}{mole} = B_{lost}$$

$$B_{lost} = (1776.8 + 6.0 - 200.4) = 1582.4 \frac{kJ}{mole(Al_2O_3)}$$

See Appendix of Szargut for exegy values

Materials can do work?

Insert reversible heat engine between high and low temperatures

Chemical Properties referenced to the "environment"

Crust

Oceans

78.004 percent 20.947 percent 0.034 percent 0.033 percent
15.2 parts/million 5.2 parts/million 1.1 parts/million 1.0 parts/million 2.0 parts/million 0.5 parts/million 0.5 parts/million 0.09 parts/million 0.09 parts/million 0.01 to 0.07 parts/million 0.01 to 0.02 parts/million

The above table is an average for clean. dry air at sea level 1 partimilion = 0.0001 percent.

Atmosphere

$T_0 = 298.2 \text{ K}, P_0 = 101.3 \text{ kPA}$

Exergy Reference System

Exergy Reference System

Example; making pure iron from the crust

			Reference species		Standard	
the		ithosphere	2	Conventional standard	Standard chemical	exergy of the
Chemical element	Formula	Mass fraction	Formula	mole fraction x _m	exergy, kJ/mol	element, kJ/mol
Al (s)	Al ₂ O ₃	0.152	Al ₂ SiO ₅ (sillimanite)	2×10^{-3}	15.4	888.4
Ba	BaO	5.1×10^{-3}	-	-	-	-
Ca	CaO	5.1×10^{-2}	-	-	-	-
Cl	Cl	4.5×10^{-4}	-	-	2	-
Co (s)	Co	4×10^{-5}	Co ₃ O ₄	2×10^{-7}	38.2	265.0
Cr (s)	Cr ₂ O ₃	5.2 × 10 ⁻⁴	Cr2O3 (3)	4×10^{-7}	36.5	544.3
Fe (s)	FeO Fe ₂ O ₃	3.72×10^{-2} 3.10×10^{-2}	Fe ₂ O ₃ (s)	1.3×10^{-3}	16.5	376.4
ĸ	K ₂ O	3.11×10^{-2}	-	-	-	-
Mg (s)	MgO	3.45×10^{-2}	CaCO, · MgCO,	2.3×10^{-3}	15.1	633.8
Mn (s)	MnO	1.18×10^{-3}	MnO ₂	2×10^{-4}	21.1	482.3
Na	Na ₂ O	3.71×10^{-2}	-	-	-	-
P (s)	P ₂ O ₅	2.85×10^{-3}	Ca ₃ (PO ₄) ₂	4×10^{-4}	19.4	875.8
S	so,	2.6×10^{-4}	_	-	_	-
Sb (s), III	Sb	1×10^{-6}	Sb ₂ O ₅	7×10^{-10}	52.3	435.8
Si (s)	SiO ₂	0.591	$SiO_2(s)$	0.472	1.9	854.6
Sn (s), white	Sn	4×10^{-3}	$SnO_2(s)$	8×10^{-6}	29.1	544.8
Ti (s), II	TiO ₂	1.03×10^{-2}	TiO ₂ (s), III	1.8×10^{-4}	21.4	906.9
U (s), III	U	4×10^{-6}	UO ₃ (s)	2×10^{-1}	43.9	1190.7
V (s)	V ₂ O ₅	2.3×10^{-4}	V2O5 (5)	2×10^{-6}	32.5	712.1

Table 2.8 Solid reference species and their conventional average concentration in the external layer of the earth crust

Extraction from the crust

Extracting Fe_2O_3 from $c = 1.3 \times 10^{-3}$ (crust) to c = 1

$$B = T_o R \ln \frac{1}{1.3x 10^{-3}}$$

$$B = 298.2^{\circ} K \times 8.314 \frac{J}{mole^{\circ} K} \times \ln \frac{1}{1.3 \times 10^{-3}} = 16.5 \frac{kJ}{mole}$$

Note: $R = k N_{avo}$ (Boltzmann's constant X Avogadro's number)

Reduction of Fe_2O_3 (Hematite)

$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$

2 x 16.5 + 3 x 410.3 – 4 x 376.4 – 3 x 19.9 =

B_{lost} = - 301.4 kJ this is an endothermic reaction i.e. minimum energy required to reduce 2 mole of hematite

Iron Ore Reduction

Recall C + $O_2 \rightarrow CO_2$ produces 394.8 kJ/mole C

We need
$$\frac{301.4}{394.8} = 0.76$$
 moles of carbon

 $2Fe2O_3 + 3.76C + 0.76O_2 \rightarrow 4Fe + 3.76 CO_2$

Iron Ore Reduction

but the efficiency <u>of the use of carbon</u> is only 30.3% therefore the actual reaction is

Iron Ore Reduction

Summary for Iron Ore

Homework Problem

- Calculate the minimum work to reduce iron using hydrogen
- Fe2O3 + H2 = 2 Fe3O4 + H2O (1)
 Fe3O4 + H2 = 3 FeO + H2O
 FeO + H2 = Fe + H2O
- Now assume the H2 comes from electrolysis and add this in
- 2 H20 = 2 H2 + O2

Energy data from Smil

Table 6	Ranges of	Energy	Densities	of Common	Fuels	and
Foodstuff	5					

Energy density	(MJ/kg)
Hydrogen	114.0
Gasolines	46.0-47.0
Crude oils	42.0-44.0
Pure plant oils	38.0-37.0
Natural gases	33.0-37.0
Butter	29.0-30.0
Ethanol	29.6
Best bituminous coals	27.0-29.0
Pure protein	23.0
Common steam coals	22.0-24.0
Good lignites	18.0-20.0
Pure carbohydrates	17.0
Cereal grains	15.2-15.4
Air-dried wood	14.0-15.0
Cereal straws	12.0-15.0
Lean means	5.0-10.0
Fish	2.9-9.3
Potatoes	3.2-4.8
Fruits	1.5-4.0
Human feces	1.8-3.0
Vegetables	0.6-1.8
Urine	0.1-0.2

Table 8 Typical Energy Costs of Common Materials (MJ/kg)

Material	Energy cost	Made or extracted from
Aluminum	227-342	Bausite
Bricks	2-5	Clay
Cement	5-9	Clay and limestone
Copper	60-125	Sulfide ore
Glass	18-35	Sand, etc.
Iron	20-25	Iron ore
Limestone	0.07-0.1	Sedimentary rock
Nickel	230-70	Ore concentrate
Paper	25-50	Standing timber
Polyethylene	87-115	Crude oil
Polystyrene	62-108	Crude oil
Polyvinylchloride	85-107	Crude oil
Sand	0.08-0.1	Riverbed
Silicon	230-235	Silica
Steel	20-50	Iron
Sulfuric acid	2-3	Sulfur
Titanium	900-940	Ore concentrate
Water	0.001-0.01	Streams, reservoirs
Wood	3-7	Standing timber

Summary

- Exergy = Available work referred to the "dead state"
- Both fuel and non-fuel materials have exergy equivalents
- Exergy is not conserved

$$B_{in} - B_{out} = \Delta B_{lost}$$

Exergy Homeworks

- 3. What is the minimum work required for photosynthesis?
- 4. What is the maximum work one could obtain from auto-respiration?
- 5. What is the maximum work one could obtain from burning the following fuels with oxygen: octane? methane? methanol? hydrogen? How much CO₂ is generated for each?

Applications

- Exergy Analysis of Extraction, Smelting
- Exergy Analysis of Industry (Ayres et al)
- Exergy Analysis of Natural Systems (Bakshi)
- Exergy of Mfg Processes
- Exergy Analysis of Recycling Flows