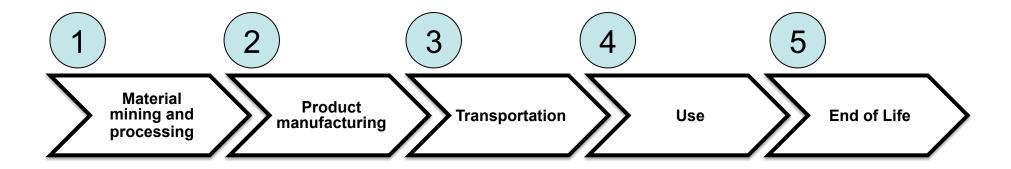
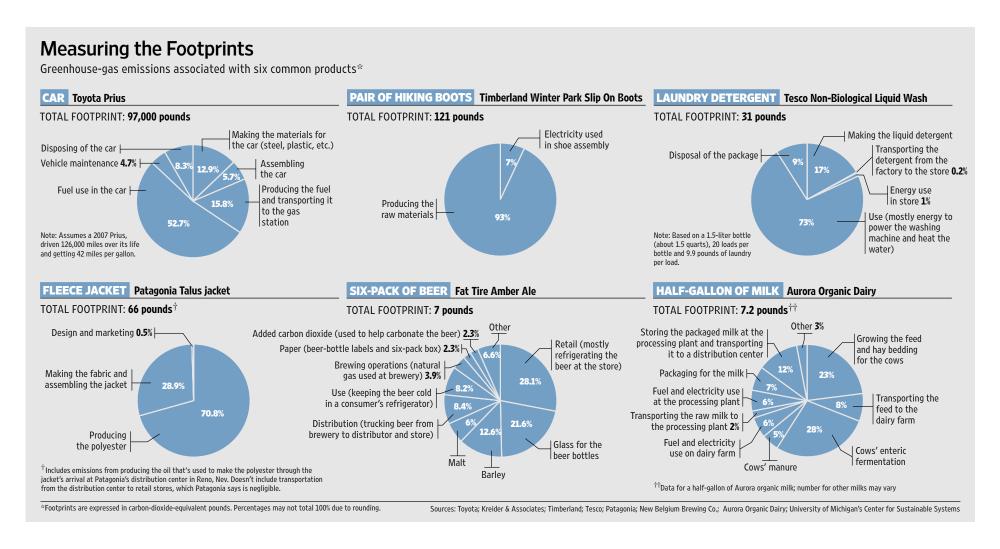

Life Cycle Assessment

LCA is a methodology to account for and assess the environmental impacts from all phases / stages of a product life cycle


LCA Exercise


Environ. Res. Lett. 4 (2009) 014009, http://iopscience.iop.org/1748-9326/4/1/014009

Results: Yours

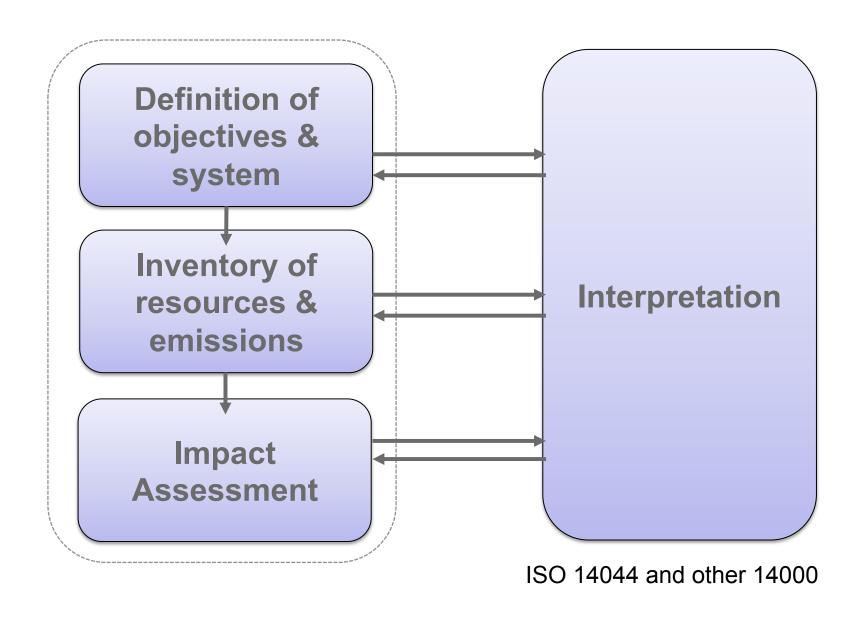
Product	Descending Order of Energy Consumption
Car	4>2 >1 >5 >3
Shoes	1>3 >2 >5 >4
Laundry Detergent	4>1 >2 >3 >5
Fleece Jacket	1>2 >4 >3 >5
Beer	1>2 >4 >3 >5
Milk	3>2 >4 >1 >5

Results: WSJ

Introduction to Product Analysis

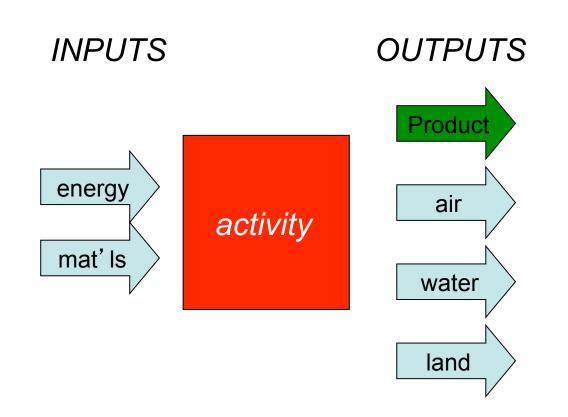
What is the impact of a product?

- What impact are we interested in?
- What unit of service is provided?
- 1. What is it made of?
- 2. How is it made?
- 3. Is it transported a long distance?
- 4. How is it used?
- 5. How is it disposed of?



Challenges

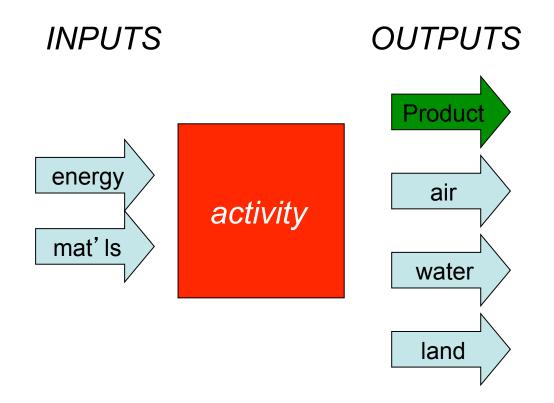
- ☐ Boundary and Scope
 - ☐ What does each phase mean?
 - ☐ What is actually included?
- ☐Geo-temporal
- □ Uncertainty
- ☐ Functional Unit
- □ Data Quality
- ☐ Methodological Choices


Life Cycle Assessment: Framework (ISO)

Life Cycle Inventory

- LCI collected data on material inputs and outputs
- LCA = LCI + Impact Analysis
- Impact Analysis Issues:
 - Converting LCI to 'comprehensible' impacts
 - Human Health
 - Ecotoxicity
 - Natural Resources
 - Others

Life Cycle Inventory


Life Cycle Perspective

- In theory boundaries start from earth as the source, and return to earth as the sink
- Evaluation is often focused on a product or service
- Tracking is of materials
- Time stands still

Estimations Methods

- Streamlined Life-cycle Assessment (SLCA)
 - Eco-Audit (Ashby)
- Process Models (LCA)
- Input / Output Models (EIOLCA)
- Hybrid Models

Streamlined LCA

Issues:

- 1. qualitative Vs quantitative
- 2. aggregation

Evaluation Matrix for SLCA, M_{ij}

Life Cycle Stages	Materials Choice	Energy Use	Solid Residues	Liquid Residues	Gaseous Residues
Extraction and Refining	11	12	13	14	15
Manufacturing.)	21	22	23	24	25
Product Delivery)	Si	32	33	34	33
Product Use)	41	42	43	44	45
Refurbishment, Recycling, Disposal	51	52	53	54	55

Graedel

Scoring M_{21} (mat'ls used in mfg)

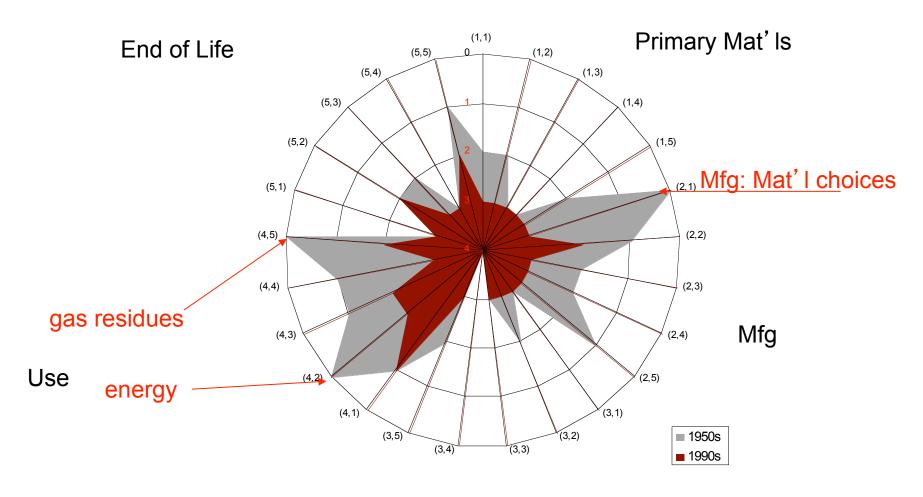
 M₂₁ = 0 when product mfg requires relatively large amounts of restricted mat' ls (limited supply, toxic, radioactive) and alternatives are available.

 M₂₁ =4 when mat' Is used in mfg are completely closed loop and minimum inputs are required.

Automobile Example; Manufacturing Ratings 0-4 (best)

Element Designation		Element Value & Explanation: 1950s Auto			Element Value & Explanation: 1990s Auto		
Matls. choice)	Matls. choice♪ 21 0 Chlorinated solvents, cyanide		3	Good materials choices, except for lead solder waste			
Energy use	Energy use 1 Energy use during manufacture is high		Energy use during manufacture is high	2	Energy use during manufacture is fairly high		
Solid residue.	23	2	Lots of metal scrap and packaging scrap produced	3	Some metal scrap and packaging scrap produced		
Liq. Residue.	<i>Liq.</i> Residue ▶ 24 2 Substantial liquid residues from cleaning and painting		3	Some liquid residues from cleaning and painting			
Gas residue)	residue > 25 1 Volatile hydrocarbons emitted from paint shop		3	Small amounts of volatile hydrocarbons emitted			

taken from Graedel 1998


Product Assessment Matrix for the Generic 1950s Automobile [Graedel 1998].

	Environmental Stressor									
Life Cycle Stage	Materials Choice	Energy Use	Solid Residues	Liquid Residues	Gaseous Residues	Total				
Premanufacture	2	2	3	3	2	12/20				
Product Manufacture	0	1	2	2	1	6/20				
Product Delivery	3	2	3	4	2	14/20				
Product Use	1	0	1	1	0	3/20				
Refurbishment, Recycling, Disposal	3	2	2	3	1	11/20				
Total	9/20	7/20	11/20	13/20	6/20	46/100				

Product Assessment Matrix for the Generic 1990s Automobile [Graedel 1998].

	Environmental Stressor									
Life Cycle Stage	Materials Choice	Energy Use	Solid Residues	Liquid Residues	Gaseous Residues	Total				
Premanufacture	3	3	3	3	3	15/20				
Product	3	2	3	3	3	14/20				
Manufacture										
Product	3	3	3	4	3	16/20				
Delivery										
Product Use	1	2	2	3	2	10/20				
Refurbishment,	3	2	3	3	2	13/20				
Recycling,										
Disposal										
Total	13/20	12/20	14/20	16/20	13/20	68/100				

Target plot of the estimated SLCA impacts for generic automobiles for the 1950s and 1990s

distribution [Graedel 1998]

Eco-Audit for Energy

- 1. Materials Production
- 2. Manufacturing
- 3. Transport
- 4. Use Phase
- 5. End of Life

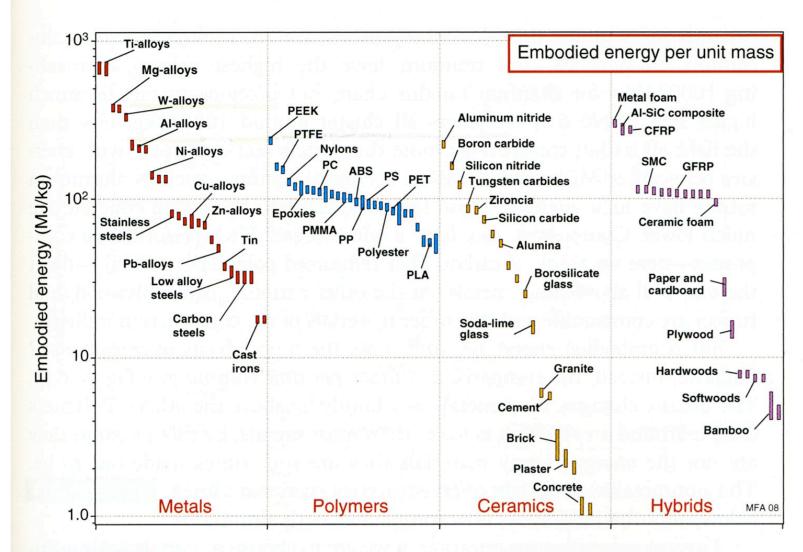


FIGURE 6.8 A bar chart of the embodied energies of materials per unit mass.

Estimate Manufacturing Methods

TARLE 1	EMPERICAL	MANUFACTURING	ENERGY STUDIES

Manufacturing Process	Require	Energy Requirement Range (MJ/kg processed)						
Coventional Manufacturing								
Machining	5.3	-	7.5	[4]				
Milling	1.3	-	2.6	[4]				
Grinding		8.8		[5]				
Iron Casting	19	-	29	[3]				
Sand casting	11.6	-	15.4	[6]				
die casting		14.9		[7]				
Forging		16.3		[8]				
Finish Machining		24		[9]				
Advanced Manufac	eturing							
Waterjet (Nylon)	150	-	214					
Waterjet (Steel)	167	-	238	[10]				
Waterjet (Al)	195	-	1670					

Table 2

Manufacturing methods	Energy intensity (MJ/kg)
Autoclave molding	21.9ª
Spray up	14.9 ^b
Resin transfer molding (RTM)	12.8 ^b
Vacuum assisted resin infusion (VARI)	10.2 ^b
Cold press	11.8 ^b
Preform matched die	10.1 ^b
Sheet molding compound (SMC)	3.5 ^b
Filament winding	2.7 ^b
Pultrusion	3.1 ^b
Prepreg production	40.0^{b}
Injection molding (hydraulic)	19.0°
Glass fabric manufacturing	2.6 ^d
Iron casting (Cupola)	13.6°

[1]

Table 1: N. Duque Ciceri, T. G. Gutowski, M. Garetti, 2010, and

Table 2: Young S. Song, Jae R. Youn, Timothy G. Gutowski,

Use Phase

End of Life (EOL)

- Recycle
- Remanufacture
- Reuse
- Landfill
- Incinerate

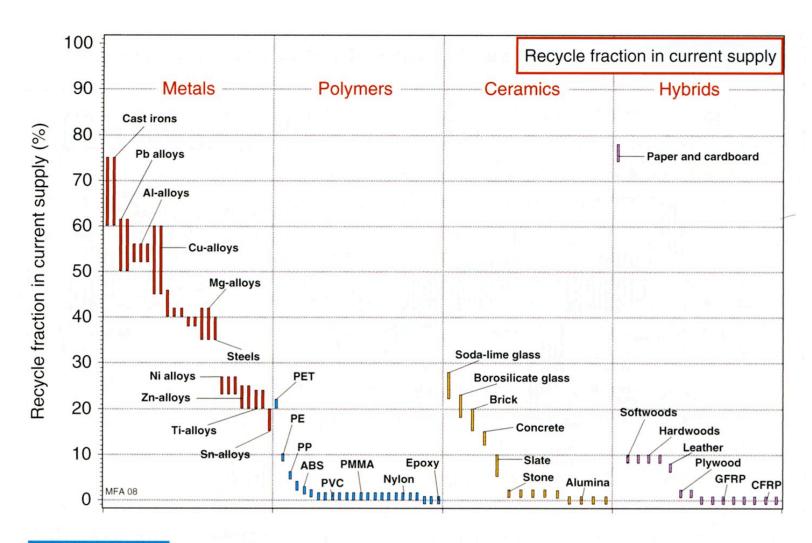
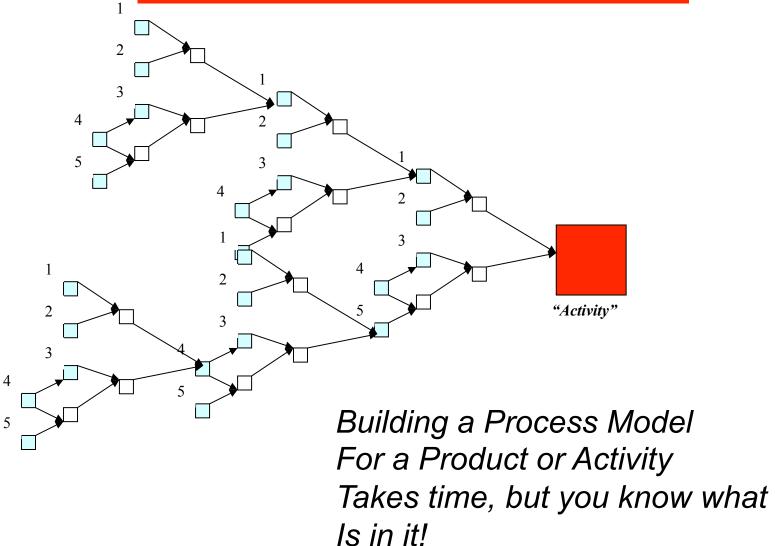


FIGURE 6.13 Recycle fraction bar chart.

Table 7.3	Recycle ener	rgy and CO ₂ for PE	T			
Component	Material	Mass m kg	Recycle energy <i>H_{rc}</i> MJ/kg*	Recycle CO ₂ kg/kg*	m.H _{tot} MJ	m.(CO ₂) _{tot} kg
Bottle, 100 units	PET	4	35	0.98	-188	-5.6


^{*}From the data sheets of Chapter 12.

See Ashby Ch. 7 for basic assumptions and Ch 9 for a comparison between various beverage container options

FIGURE 7.3 The energy and the carbon footprint bar charts for bottled water per 100 units.

Process Model LCA

Process Model for "U.S. Family Sedan".

- Estimated from 644 parts
- 73 different materials
- 120,000 miles life time
- 23 mpg
- total mass 1532 kg
- solvent based paints with controls

Plastics	9.3%
Ferrous	64%
Non- ferrous	9%
Fluids	4.8%
Other	13%
Total	100%

Sullivan et al SAE 1998

System Boundaries

- Extraction of materials from earth and materials processing
- 2. Sub assembly manufacture
- 3. Auto assembly
- 4. Use, maintenance & repair
- Recovery, recycling and disposal

Table 7: LCI of the Generic Vehicle (Raw Materials Use)

	Units	Generic	Material	1	Operation	Maintenanc	End Of Life
Inflow	+	Vehicle	Production	uring		e & Repair	
(r) Bauxite (Al2O3, ore)	Kg	32	32	0.0026	0	0.021	0
(r) Bauxite Rich Soil	Kg	222	222	0.0020	0	0.021	0.
(r) Chromium (Cr, in ground)	Kg	0.91	0.91	0	0	0	0
(r) Coal (in ground)	Kg	2,509	1,033	618	748	100	11
(r) Copper (Cu, in ground)	Kg	23	23	0	0	0	0
(r) Ilmenite (FeO.TiO2, in ground)	Kg	0.97	0.32	0.65	0	9.9 E-05	0
(r) Iron (Fe, in ground)	Kg	1,443	1,440	0.38	0	3.0	0.045
(r) Lead (Pb, in ground)	Kg	33	13	0.26	0	20	0
(r) Limestone (CaCO3, in ground)	Kg	458	199	95	142	21	2.
(r) Manganese (Mn, in ground)	Kg	24	23	0	0	0.76	0
(r) Natural Gas (in ground)	Kg	1,810	491	216	1,027	73	2.2
(r) Oil (in ground)	Kg	16,486	631	87	15,562	171	35
(r) Olivine (in ground)	Kg	8.3	8.3	0	0	0.0032	0
(r) Perlite (SiO2, in ground)	Kg	2.4	2.3	0.056	0	0	0
(r) Platinum (Pt, in ground)	Kg	0.0015	0.0015	0	0	0	0
(r) Pyrite (FeS2, in ground)	Kg	13	13	0	0	4.3 E-05	0
(r) Rhodium (Rh, in ground)	Kg	2.9 E-04	2.9 E-04	0	0	0	0
(r) Sand (in ground)	Kg	179	140	0	0	12	27
(r) Sulfur (S)	Kg	0.1	0.08	0.022	0	4.0 E-05	0
(r) Tin (Sn, in ground)	Kg	0.48	0.067	0.41	0	0	0
(r) Tungsten (W, in ground)	Kg	0.012	0.011	0	0	6.8 E-04	0
(r) Uranium (U, in ground) ^a	Kg	0.039	0.01	0.0089	0.018	0.0019	2.5 E-04
(r) Zinc (Zn, in ground)	Kg	22	22	0	0	4.3 E-04	0
Cullet (from stock)	Kg	0.013	0	0.013	0	0	0
Iron Scrap	Kg	243	200	0.05	0	43	0
Natural Rubber	Kg	25	8.8	0	0	16	0
Raw Materials (alloying additives)	Kg	4.0	4.0	0	0	0	0
Raw Materials (Iron Casting Alloys)	Kg	12	12	0	0	0	0
Raw Materials (unspecified)	Kg	17	7.4	9.2	0	0.32	0
Steel Scrap	Kg	474	428	0	0	46	0
Water Used (total)	Liter	76,959	59,672	9,818	2,007	5,459	4.0

^a From electricity production

Table 8: LCI of the Generic Vehicle (Outflows and Energy Use)

	Units	Generic	Material	Manufacturing	Operation	Maintenanc	
		Vehicle	Production			e & Repair	Life
Outflow							
(a) Carbon Dioxide (CO2, fossil)	gm	59,092,200	4,439,850	2,562,160	51,331,400	615,481	143,273
(a) Carbon Monoxide (CO)	gm	1,942,230	63,813	5,914	1,832,728	39,088	683
(a) Hydrocarbons (except methane)	gm	256,640	12,627	7,349	234,520	1,974	170
(a) Hydrogen Chloride (HCI)	gm	725	278	10	402	29	5.7
(a) Hydrogen Fluoride (HF)	gm	113	59	1.1	50	2.0	0.71
(a) Lead (Pb)	gm	115	50	1.2	1.1	63	0.015
(a) Methane (CH4)	gm	65,806	11,773	5,534	44,500	3,854	144
(a) Nitrogen Oxides (NOx as NO2)	gm	254,193	12,871	8,295	229,465	2,755	806
(a) Particulates (unspecified)	gm	53,526	26,470	8,235	16,525	2,050	247
(a) Sulfur Oxides (SOx as SO2)	gm	133,326	30,491	14,917	83,180	4,424	315
(w) Ammonia (NH4+, NH3, as N)	gm	2,354	116	17	2,208	12	1.9
(w) Dissolved Matter (unspecified)	gm	7,686	4,527	1,118	982	1,041	17
(w) Heavy Metals (total)	gm	39	29	7.5	0	3.1	0.0013
(w) Oils (unspecified)	gm	7,611	130	516	6,918	39	7.4
(w) Other Organics (unspecified)	gm	80	77	0.43	0	2.5	2.2 E-04
(w) Phosphates (as P)	gm	15	7.2	7.8	0	0.42	1.6 E-05
(w) Suspended Matter (unspecified)	gm	74,321	2,779	2,450	68,522	512	58
Waste (municipal and industrial)	Kg	415	22	56	8.0 E-05	41	296
Waste (total)	Kg	4,213	2,440	386	783	277	326
Energy Reminder							
E (HHV) Feedstock Energy	MJ	28,016	18,574	953	308	8,182	0
E (HHV) Fossil Energy	MJ	967,367	90,741	38,414	819,791	16,274	2,147
E (HHV) Non-Fossil Energy	MJ	6,053	3,719	803	1,142	373	16
E (HHV) Process Energy	MJ	934,369	74,531	36,691	814,014	8,389	746
E (HHV) Total Energy	MJ	973,418	94,460	39,217	820,933	16,645	2,164
E (HHV) Transportation Energy	MJ	11,033	1,355	1,574	6,612	74	1,418
Electricity	MJ	10,577	2,468	6,769	0	1,203	136

Total Energy Use by Lifecycle Stage

Total Energy 973 GJ/car♪

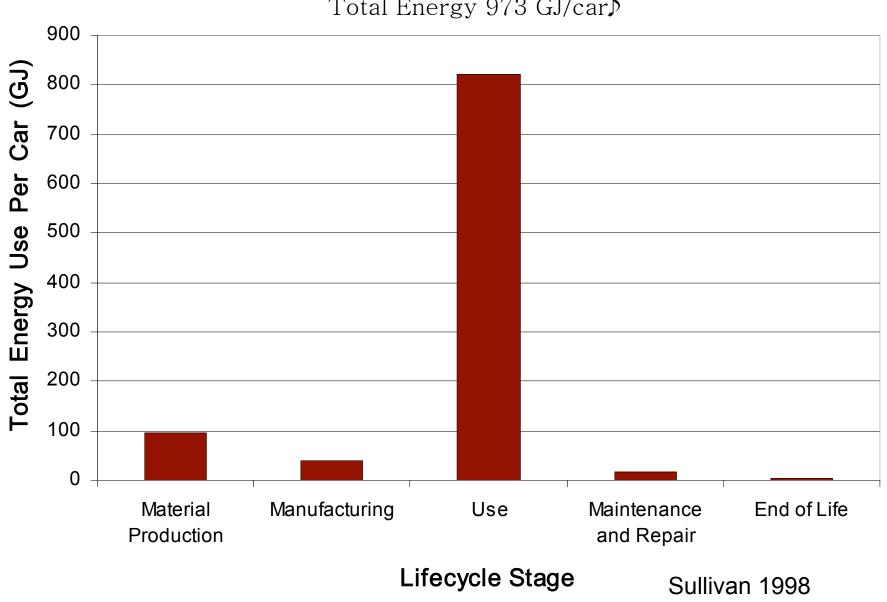


Table 1
Eco-Audit for Sullivan's Automobile (Primarily using energy values from Smil)

Bill of Materials (BOM)	Mass (kg)	MJ/kg	Energy (MJ)
Plastics (PUR, PVC, Nylon, ABS)	143kg	100 MJ/kg	14,300
Non-Ferrous			
Alu	93kg	200	18,600
Cu	18	100	1,800
Brass (Copper $\sim 65\%$, zinc $\sim 35\%$)	8.5	90	765
Lead	13	50	650
Other (Zn, Cr)	5.5	30	165
Iron	156.5 kg	25	3,913
Steel	828.5 kg	50	41,425
Fluids (gasoline, oil,)	74	10	740
Rubber (not tire)	60	100	6,000
Glass	42	20	820
Tires	45	100	4,500
Other (textiles, carpet)	45	20	900
TOTAL			94,578

Sullivan result: 94,460!

Tables from Smil, 2008

Converter	Conversion	Efficiency (%)
Large electricity generator	$m \Rightarrow e$	98-99
Large power plant boiler	$c \Rightarrow t$	90-98
Large electric motor	$e \Rightarrow m$	90-97
Best household natural gas furnace	$c \Rightarrow t$	90-97
Dry-cell battery	$c \Rightarrow e$	85-95
Human lactation	$c \Rightarrow c$	75-85
Overshot waterwheel	$m \Rightarrow m \\$	60-85
Small electric motor	$e \Rightarrow m$	65-80
Most efficient bacterial growth	$c \Rightarrow c$	50-65
Glycolysis maxima	$c \Rightarrow c$	50-60
Large steam turbine	$t \Rightarrow m$	40-45
Improved wood stove	$c \Rightarrow t$	25-45
Large gas turbine	$c \Rightarrow m$	35-40
Diesel engine	$c \Rightarrow m$	30-35
Mammalian postnatal growth	$c \Rightarrow c$	30-35
Best PV cell	$r \Rightarrow e$	20-30
Best large steam engine	$c \Rightarrow m$	20-25
Internal combustion engine	$c \Rightarrow m \\$	15-25
High-pressure sodium lamp	$e \Rightarrow r$	15-20
Mammalian muscles	$c \Rightarrow m \\$	15-20
Milk production	$c \Rightarrow c$	15-20
Pregnancy	$c \Rightarrow c$	10-20
Broiler production	$c \Rightarrow c$	10-15
Traditional stove	$c \Rightarrow t$	10-15
Fluorescent light	$e \Rightarrow r$	10-12
Beef production	$c \Rightarrow c$	5-10
Steam locomotive	$c \Rightarrow m$	3-6
Peak photosynthetic rate	$r \Rightarrow c$	4-5
Incandescent light bulb	$e \Rightarrow r$	2-5
Paraffin candle	$c \Rightarrow r$	1-2

Table A.11 Efficiencies of Common Energy Conversions

	Energy Cost		
Material	(MJ/kg)	Source	
Aluminum	190–230	Bauxite	
Aluminum	10-40	Recycled metal	
Bricks	2-5	Fired clay	
Cement	5–9	Raw materials	
Ceramics	3–7	Raw materials	
Concrete	1-3	Cement and aggregate	
Copper	60-150	Ore	
Explosives	10-70	Raw materials	
Glass	15-30	Raw materials	
Gravel	< 0.1	Quarries, rivers	
Hydrogen	192-252	Electrolysis of water	
Iron	20-25	Ore	
Lead	30-50	Ore	
Lime	10-12	Limestone	
Newsprint	8-10	Wood pulp	
Oxygen	6-14	Air	
Nitrogen	1.5-1.9	Air	
Paints	90-100	Raw materials	
Paper, packaging	10-15	Kraft process	
Paper, high quality	25-35	Wood pulp	
Polyethylene	75-115	Crude oil	
Polyvinylchloride	75-100	Crude oil	
Sand	< 0.1	Excavated	
Silicon	1400-4100	Single crystal from silic	
Steel, ordinary	20-25	Pig iron	
Steel, specialty alloy	30-60	Raw materials	
Stone	<1	Quarried	
Sulfuric acid	2-3	Sulfur	
Timber	1-3	Standing wood	
Titanium	900-1000	Ore concentrate	
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	0.01		

Streams, reservoirs

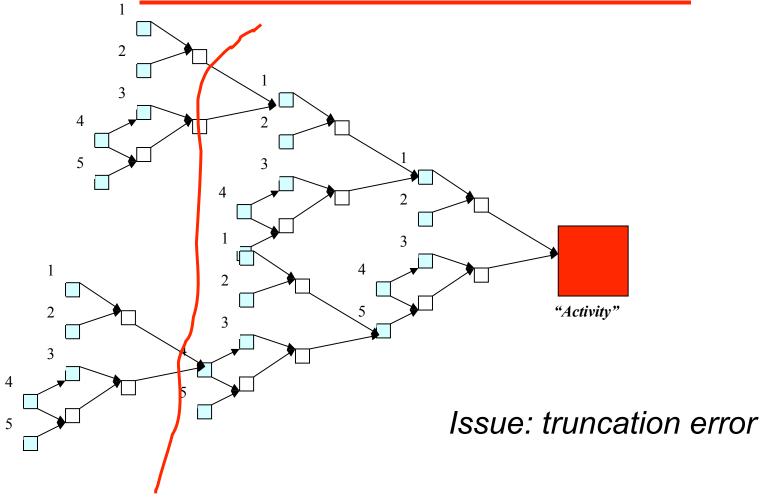
Table A.12 Typica Energy Cost of Common Materials

 $r \Rightarrow c$

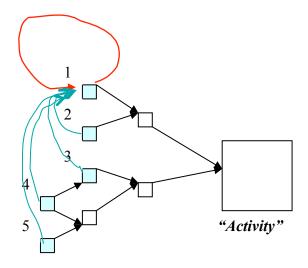
 $r \Rightarrow c$

1-2

0.3

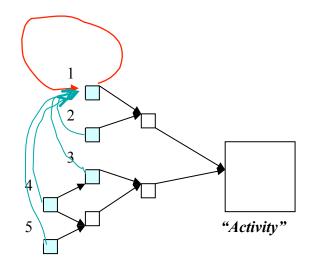

Water

Most productive ecosystem


Global photosynthetic mean

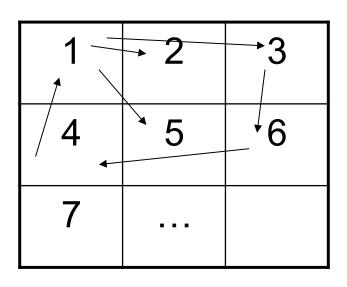
 $[\]label{eq:continuous} \begin{array}{ll} c = \text{chemical energy; } e = \text{ electrical energy; } m = \text{mechanical} \\ \text{(kinetic) energy; } r = \text{radiant (electromagnetic) energy; } \text{ and} \\ t = \text{thermal energy.} \end{array}$

Process Model LCA



Demand Vs Production

Each sector may have to produce "extra" to satisfy not only the identified "activity" but also to provide for all of the inputs


Demand Vs Production

- f = "demand for 1" by the "Activity"
- x = quantity of 1 produced to meet the demand
- $x-\alpha x = f$
- $x = f/(1-\alpha)$

Because of interactions, "1" has to produce more "x" than "f" furthermore, 2, 3, 4, ... have to produce to support "1"

Input/Output Analysis.

- f₁ = "demand for 1" by the "Activity 1"
- x_i = quantity of "i" produced to meet the demand for "1"

Physically we can think of subdividing the economy in sectors that interact with each other. The sectors include all activities so there are no truncation errors, however to be manageable we can only handle a few hundred sectors, therefore each sector will actually include a lot of different activities. "Aggregation errors"

Simplified input-output table for a threesector economy

Table 2.1 from Leontief, Oxford Press '86

From:	to	Sector 1: :Agriculture	Sector 2: Manufacture	Sector 3: House- Holds	Total Output
Sector 1: Agriculture		25	20	55	100 bushels of wheat
Sector 2: Manufacture		14	6	30	50 yards of cloth
Sector 3: Households		80	180	40	300 man- years of labor

From:	to	Sector 1: :Agriculture	Sector 2: Manufacture	Sector 3: House- Holds	Total Output
Sector 1: Agriculture		25	20	55	100 bushels of wheat
Sector 2: Manufacture		14	6	30	50 yards of cloth
Sector 3: Households		80	180	40	300 man- years of labor

Dollars

	Ag	Mfg.	House (demand)	Total (pro- duction)
Ag	X ₁₁	X ₁₂	f ₁	x ₁
Mfg	X ₂₁	X ₂₂	f ₂	x ₂

In matrix form

$$(x_{1} - x_{11}) - x_{12} = f_{1},$$

$$-x_{21} + (x_{2} - x_{22}) = f_{2}$$
or using coefficients $a_{ij} = x_{ij}/x_{j}$

$$(1 - a_{11})x_{1} - a_{12}x_{2} = f_{1},$$

$$-a_{21}x_{1} + (1 - a_{22})x_{2} = f_{2},$$
or
$$[I - a] \{x\} = \{f\}$$

$$[I - a] \{x\} = \{f\} \}$$

$$\{x\} = [I - a]^{-1} \{f\} \}$$

$$\{e\} = [R] \{x\} \}$$

$$\{e\} = [R] [I - a]^{-1} \{f\} \}$$

where [R] is a matrix with diagonal elements (impact/dollar) and {e} = environmental impacts.

CMU I/O website http://www.eiolca.net/

Read HLM Ch 1, 2, 5, 6

ANNOUNCEMENTS | ACKNOWLEDGEMENTS

ECONOMIC INPUT-OUTPUT LIFE CYCLE ASSESSMENT

GREEN DESIGN INSTITUTE

Method
Models
Use the Tool
Usage and Copyright

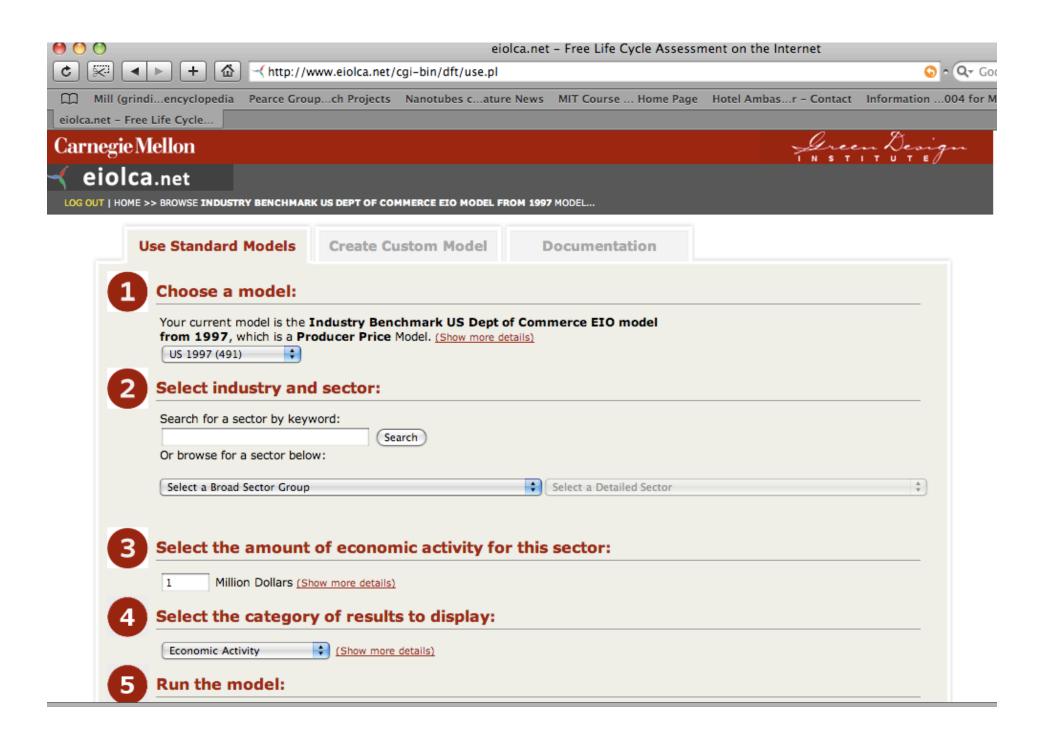
Researchers and LCA Practitioners

Corporate Users

EIO-LCA: Free, Fast, Easy Life Cycle Assessment

The Economic Input-Output Life Cycle Assessment (EIO-LCA) method estimates the materials and energy resources required for, and the environmental emissions resulting from, activities in our economy. The EIO-LCA method was theorized and developed by economist Wassily Leontief in the 1970s based on his earlier input-output work from the 1930s for which he received the Nobel Prize in Economics. Researchers at the Green Design Institute of Carnegie Mellon University operationalized Leontief's method in the mid-1990s, once sufficient computing power was widely available to perform the large-scale matrix manipulations required in real-time. This website takes the EIO-LCA method and transforms it into a user-friendly on-line tool to quickly and easily evaluate a commodity or service, as well as its supply chain. The results from the EIO-LCA model and this website are free for non-commercial use and may not be used in other derivative works or websites without permission.

Results from using the EIO-LCA on-line tool provide guidance on the relative impacts of different types of products, materials, services, or industries with respect to resource use and emissions throughout the supply chain. Thus, the effect of producing an automobile would include not only the impacts at the final assembly facility, but also the impact from mining metal ores, making electronic parts, forming windows, etc. that are needed for parts to build the car.


The EIO-LCA models available on the site apply the EIO-LCA method to various national and state economies. Each model is comprised of national economic input-output models and publicly available resource use and emissions data. Since its inception in 1995, the method has been applied to economic models of the United States for several different years, as well as Canada, Germany, Spain, and select US states. The on-line tool has been accessed over 1 million times by researchers, LCA practitioners, business users, students, and others.

Life cycle assessment, using the EIO-LCA method and on-line tool, as well as other LCA methods, is a major research focus for the Green Design Institute at Carnegie Mellon University. Over the past 15 years, our group

An EIO-LCA model of the 2002 US economy is available on the <u>Use The Model</u> page for non-commercial use. <u>Contact us</u> for details on commercial use licenses.

An EIO-LCA model based on the 2002 China economy is now publicly available.

See the <u>Models</u> page for more information.

I/O Example: Automobile

see Ch 6 of HLM

- Sector #336110: Automobile and light truck manufacturing
- 7.57 TJ/M\$ = 7.57 MJ/\$
- 7.57 MJ/\$ X \$16,000 = 121 GJ
- 193,800 miles/23.6 mpg = 8212 gal
- Smil (p 392) ~45 MJ/kg, 2.8 kg/gal
- $8212 \times 2.8 \times 45 = 1035 \text{ GJ}$

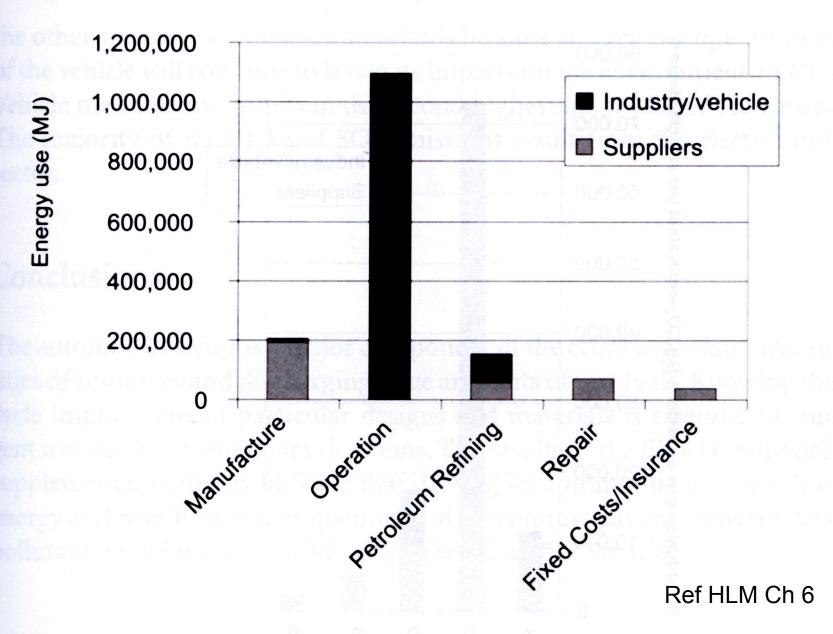


FIGURE 6-3. Energy Use in the Automobile Life Cycle

Comparisons between Models

Summary for Different Modeling Approaches

Late 1990's – early 2000's family auto (~1500 kg)

Model	Materials (GJ)	Mfg (GJ)	Total (GJ)
Sullivan	94.5	39	133.5
HLM (Ch 6 see text p			138
73)			
EIOLCA 1997 (\$16,009			121
–HLM deflator,			
producer price)			
EIOLCA 1997 (\$15,276			116
-cpi deflator, producer			
price)			
EIOLCA 2002 (\$17,126			143
producer price)			
Eco-Audit (above)	94.6	30.6 (est 20MJ/kg)	125
Mean Value (n=6)			129.4
Standard Deviation			9.5 (about 7%)

Hybrid Models and Supply Chains

 See A) Ch 2 of HLM and, B) Matthews, H.S., Hendrickson, C.T., and Weber, C.L., The Importance of Carbon Footprint Estimation Boundaries *Environ. Sci. Technol.* 2008, vol. 42, pp 5839 – 5842.

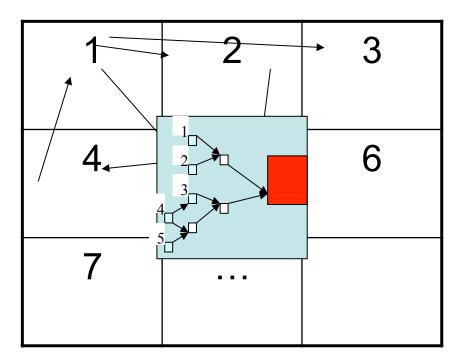


TABLE 1. Summary of Carbon Footprint Estimates for Protocol Tier and Total Emissions

	tier 1 (% of total)	tier 2 (% of total)	tier 1 $+$ 2 (% of total)
book publishers	5	1	6
power generation	92	1	93
average sector	14	12	26

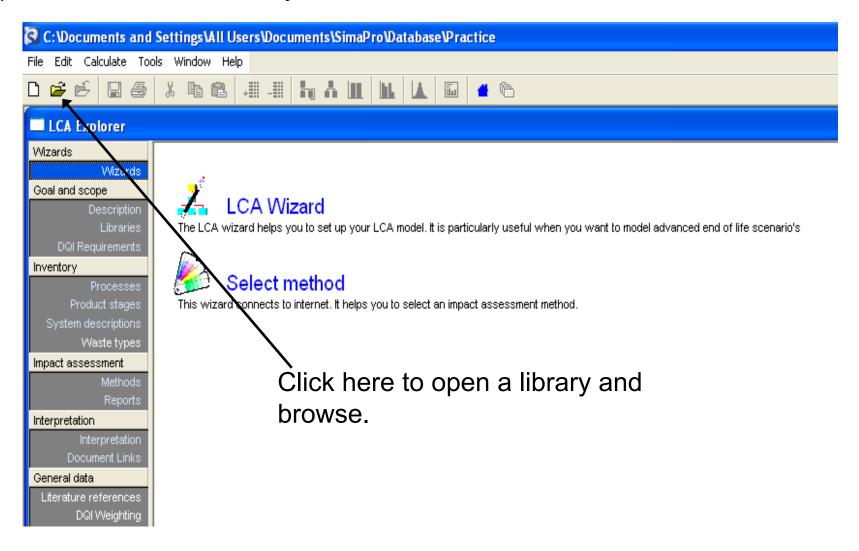
LCA software

http://www.life-cycle.org/LCA soft.htm

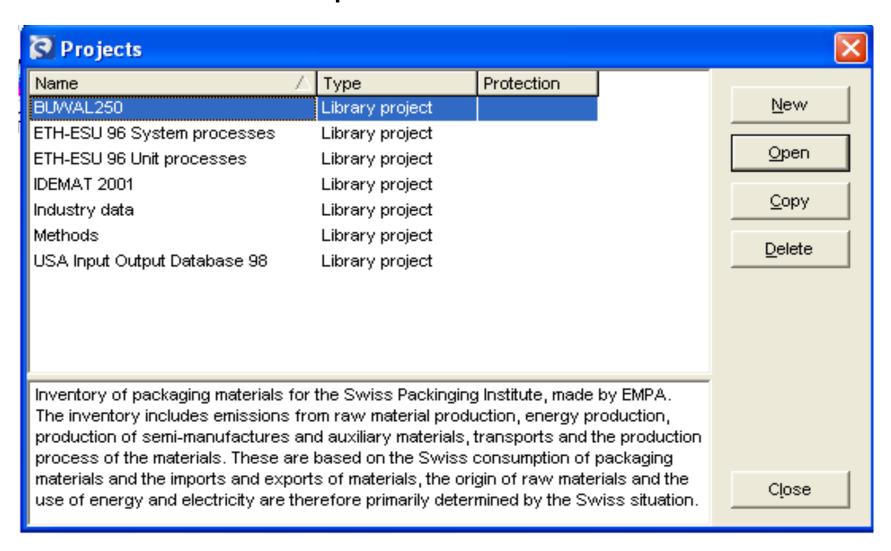
- Boustead Consulting Database and Software
- <u>ECO-it</u>: Eco-Indicator Tool for environmentally friendly design PRé Consultants
- EDIP Environmental design of industrial products Danish EPA
- <u>EIOLCA</u> Economic Input-Output LCA at Carnegie Mellon University
- GaBi 4 (Ganzheitlichen Bilanzierung holistic balancing) Five Winds International/University of Stuttgart (IKP)/PE Product Engineering
- <u>IDEMAT</u> Delft University Clean Technology Institute Interduct Environmental Product Development
- KCL-ECO 3.0 KCL LCA software
- LCAiT CIT EkoLogik (Chalmers Industriteknik)
- SimaPro 6 for Windows PRé Consultants
- <u>TEAM</u>(TM) (Tools for Environmental Analysis and Management) -Ecobalance, Inc.
- <u>Umberto</u> An advanced software tool for Life Cycle Assessment Institut für Umweltinformatik

SIMAPRO 6.0

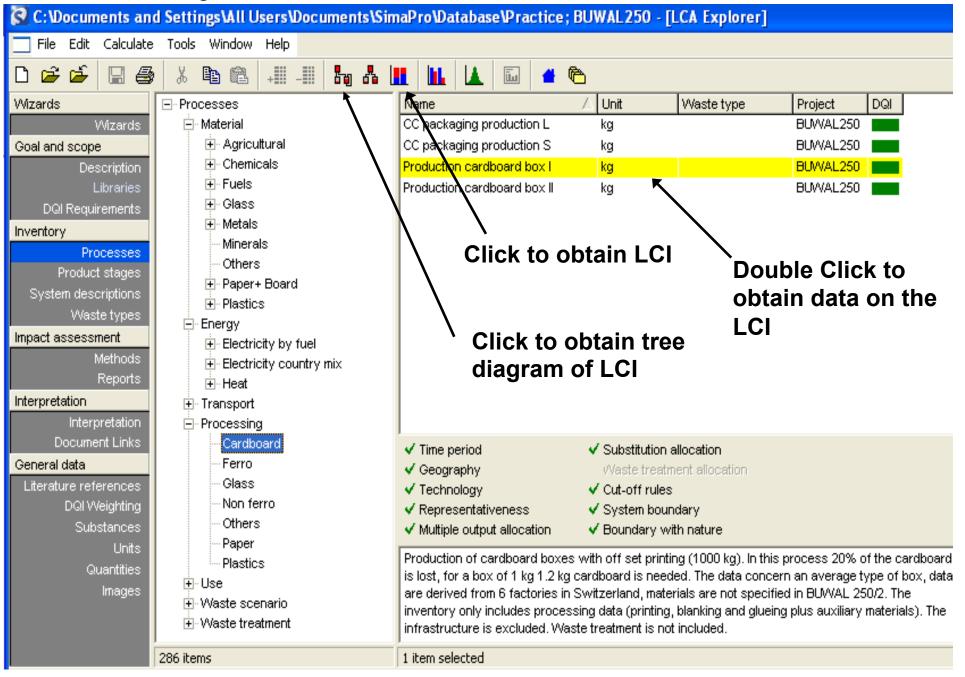
What is it?


SIMAPRO is a compilation of LCI libraries together with LCA evaluation tools such as the Eco-indicator 99. Some of its libraries include:

- Buwal 250 (Swiss EMPA)
- IDEMAT 2001 (Netherlands Delft University of Technology)
- ETH-ESU (Swiss)
- USA Input Output Database 1998

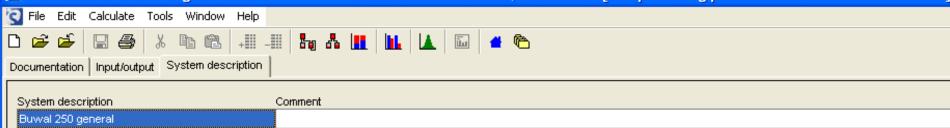

Download and play with the demo http://www.pre.nl/content/simapro-demo

The Focus of this presentation is on Navigation. Please refer to the "Wood Example" tutorial online for instructions on creating a full LCA.


- 1) Open Simapro
- 2) This is the first screen you see:

Open a database

Imagine we are interested in the LCI of a cardboard box


Data on the LCI – Input/Ouput Tab

C:\Documents and Settings\All Users\Documents\Sima	ProWatabase	·Practic	e; BUWAL250 - [Edit processing	process 'Production	n cardboard bo	x l'] 🔲 🗖
Tile Edit Calculate Tools Window Help							- 5
Documentation Input/output System description	II. A	<u> </u>	6				
Known outputs to technosphere. Products and co-products							
Name	Amount	Unit	Quantity	Allocation % Cat		Comment	
Production cardboard box I	1000	kg	Mass	100 % Car	dboard		
(Insert line here)							
Known outputs to technosphere. Avoided products							J
Name	Amount	Unit	Distribution	SD^2 or 2*SD Mir	n Max	Comment	
(Insert line here)							
			Inputs				
Known inputs from nature (resources)	C. d	0		Prinkelle, kinn	CDAO O+CD Mi-	Mari	0
Name	Sub-compartn	nent Amo		Distribution	SD^2 or 2*SD Min	34.5	Comment
lnk		18.	3 kg	Uniform	7.8	34.5	not traced ba
Glue		5.2	kg	Uniform	0.9	10.6	not traced ba
Oil		0.2	kg	Undefined			not traced ba
Additives		7	kg	Undefined			not traced ba
vVater, unspecified natural origin/kg	in water	2.5	kg	Undefined			
(Insert line here)			'				
Known inputs from technosphere (materials/fuels)							
Name	Amount	Unit	Distribution	SD^2 or 2*SD Mir	n Max	Comment	
Paper wood-free C B250	52	kg	Undefined			average amount	paper type not :
	<u>'</u>	'	'		'	in the	
LDPE B250	8.5	kg	Undefined			inventory listed as unspeci	ied plastics
(Insert line here)	0.0	, s	Oridoninod			notou do unopour	iou piuotioo.
Known inputs from technosphere (electricity/heat)							
Name	Amount	Unit	Distribution	SD^2 or 2*SD Mir	n Max	Comment	
Heat diesel B250	90.8	MJ	Undefined			(2 kg, 45.4 MJ/kg)	1
Heat gas B250	5.03	MJ	Undefined			0.1 kg propane, 5	
Flantzinitu Swies R250	325	MAth	Uniform	86	807	average	

Data on the LCI – Documentation Tab

Documentation Inpu	t/output	System description			
Project	BUWAL2:	50	Category	Processing	
Created on	2/4/2003		Last update on	6/10/2004	
Process type	System		Process identifier	BUWAL25006555300161	
Name	Productio	n of cardboard boxes with off set printing (1000 kg)			
Image					
		Dat	a Quality Indicators		
Time period		1990-1994			
Geography		Europe, Western			
Technology		Average technology			
Representativeness	:	Mixed data			
Multiple output allocs	ation	Not applicable			
Substitution allocation	n	Not applicable			
Cut-off rules		Unspecified			
System boundary		Second order (material/energy flows including operations)			
Boundary with natu	re	Not applicable			
Infra. process	No				
Date	4/1/1997				
Record	PRé Cons	PRé Consultants, Amersfoort, the Netherlands, RS			
Generator	ETH Zürich, Institut für Verfahrens- und Kältetechnik (IVUK), Switzerland. EMPA, St. Gallen, Switzerland.				
General reference and sources					
Literature Reference	В	Comment			

Data on the LCI — System Description Tab C: Wocuments and Settings WII Users Wocuments SimaPro Watabase Wractice; BUWAL 250 - [Edit processing process Production cardboard box II]

Description

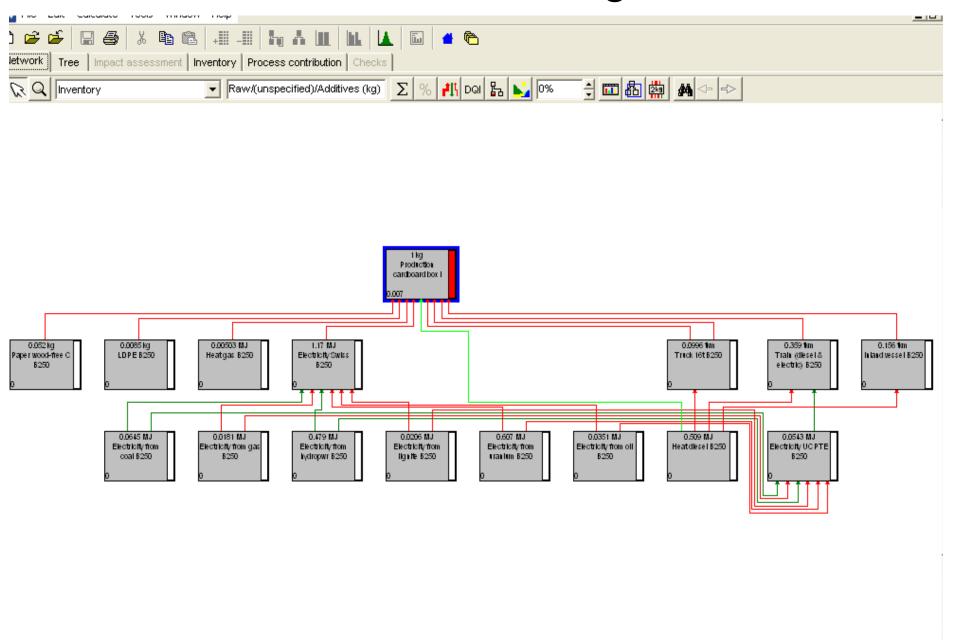
The inventory table includes emissions from raw material production, energy production, production of semi-manufactures and auxiliary materials, transports and the production process of the materials. The system model is based on the Swiss consumption of packaging materials and the imports and exports of materials, the origin of raw materials and the use of energy and electricity are therefore primarily determined by the Swiss situation.

Sub-systems

Production of input materials, transports, production of electricity and thermal energy

Cut-off rules

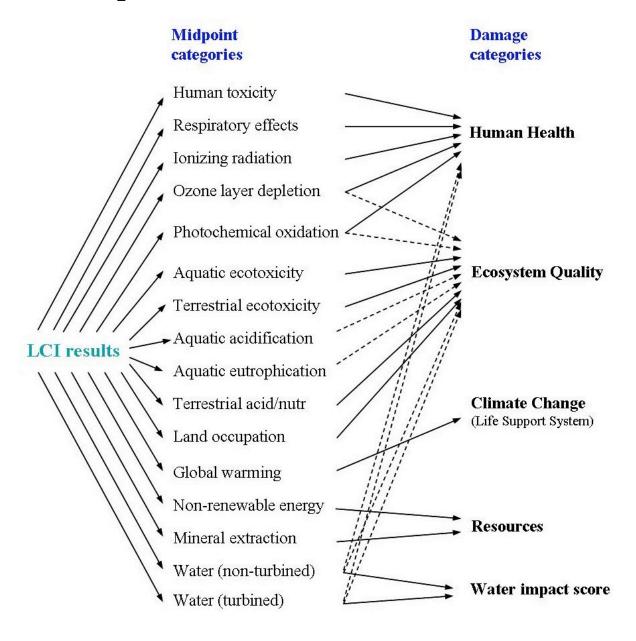
Biogenous carbon dioxide emissions are not included in the inventory table, since these are assumed to be part of the sustainable use of the biogenous, renewable, resources. Emissions to soil are only included in connection with waste processing of the packaging materials after the consumption phase. For most other processes, except for a very few processing processes, they could not be registered as there were no emissions to soil reported.


In general the production process is traced back to the raw material resources as far as possible. For some inputs, mainly chemicals and complex auxiliary materials, which are used in the production processes in smaller amounts, not enough data were available to trace the production of these materials back to the raw material resources. Since these materials are only used in small amounts, the effect of the omission in the final results will be small.

These input materials are listed as "not traced back" in the inventory tables. In the output, production waste and re-usable waste are listed. Since the amount of production waste is small, and the composition is unknown, no emissions from the processing of this waste are included in the inventory. For the re-usable wastes, which function as raw materials in another production process, no emissions from recycling processes of these materials are included in the inventory either.

Allocation rules

In general the environmental impacts of multi output processes have been allocated on a mass basis. In the output of the system co-products, which are explicitly mentioned, form an exception to this rule because these co-products leave the whole system defined and are not allocated to. In the inventory table these are listed as solids without emissions. Co-products (intermediate products), which have been balanced in single process steps, are allocated to and these are not mentioned in the total inventory input list. The output of re-usable waste has not been allocated any emissions, since it functions as a raw material in another product system.

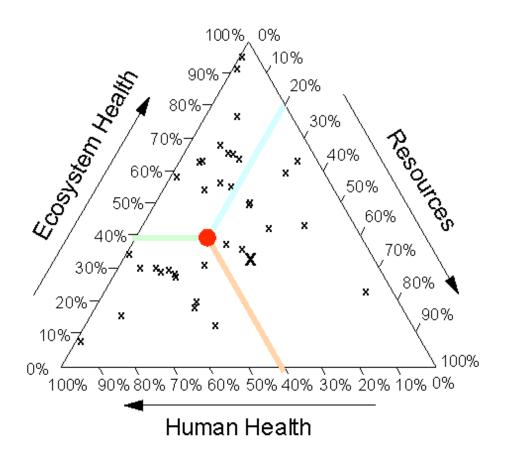

LCI – Network Diagram

LCI - Inventory 1 kg of Cardboard Box

No	Substance	Compartment	Unit	Total	Production cardboard box I	Paper wood-free C B250
1	Additives	Raw	kg	0.007	0.007	X
2	Artificial fertilizer	Raw	kg	0.0000473	x	0.0000473
3	Bauxite, in ground	Raw	kg	0.00000343	Х	0.00000879
	Biomass	Raw	kg	0.000629	x	0.000629
5	Clay, unspecified, in ground	Raw	kg	0.013	x	0.013
6	Coal, 18 MJ per kg, in ground	Raw	kg	0.0146	X	0.0021
7	Coal, brown, 8 MJ per kg, in grour	Raw	kg	0.0112	X	0.00135
8	Complexing agent	Raw	kg	0.00000417	X	0.0000417
	Defoamer	Raw	kg	0.0000158	X	0.0000158
	Energy, potential, stock, in barrage		MJ	0.688	X	0.0567
	Gas, natural, 35 MJ per m3, in gro	Raw	m3	0.00247	X	X
12	Gas, natural, 36.6 MJ per m3, in g	Raw	m3	0.0154	X	0.0106
	Gas, natural, feedstock, 35 MJ per	Raw	m3	0.0051	X	X
	Glue	Raw	kg	0.0052	0.0052	X
	Ink	Raw	kg	0.0183	0.0183	X
	Iron ore, in ground	Raw	kg	0.000002	X	0.00000302
	Limestone, in ground	Raw	kg	0.0232	X	0.0232
	Magnesium sulfate	Raw	kg	0.0000251	Х	0.0000251
	Manure	Raw	kg	0.00506	X	0.00506
20	Oil	Raw	kg	0.0002	0.0002	X
21	Oil, crude, 42.6 MJ per kg, in grou	Raw	kg	0.0202	X	0.00254
	Oil, crude, feedstock, 41 MJ per kg	Raw	kg	0.00561	X	0.0011
	Pesticides	Raw	kg	0.00000407	X	0.0000407
	Potatoes	Raw	kg	0.00105	X	0.00105
	Sand and clay, unspecified, in ground	Raw	kg	0.00000017	X	X
26	Sand, unspecified, in ground	Raw	kg	0.000000135	X	0.00000135
27	Sodium chloride, in ground	Raw	kg	0.000817	X	0.000749

Impact Assessment

Impact Assessment


ReCiPe, Eco-indicator 99, USEtox, IPCC 2007, EPD, Impact 2002+, CML-IA, Traci 2, BEES, Ecological Footprint EDIP 2003, Ecological scarcity 2006, EPS 2000, Greenhouse Gas Protocol

All in SimaPro, http://www.pre.nl/content/databases

The difference between LCA and LCI

- LCA connects the flows to environmental impacts
- Usually focuses on one or a few effects, e.g.
- *GWP*: CO2, CH4, N2O, CFC, HCFC...
- Acidification Potential: SOx, NOx, HCL, NH3, ...
- Possible to aggregate more by weighting but...

Valuation: Eco-indicator 95

Weighting of the damage categories by the panel •http://www.pre.nl/default.htm

LCI Software Results

- LCI gives a very large table of inputs and outputs, some can be aggregated to simplify e.g. GWP, acidification potential
- This result depends upon the boundaries
- This result depends upon the data set
- Therefore it is time and location dependent

Challenges

- ☐ Boundary and Scope
 - ☐ What does each phase mean?
 - ☐ What is actually included?
- ☐Geo-temporal
- ☐ Uncertainty (usually at least ± 10%)
- ☐ Functional Unit
- □ Data Quality
- Methodological Choices

Accuracy and Aluminum

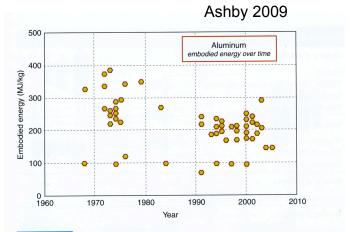


FIGURE 6.2 Data for the embodied energy of aluminum. The mean is 204 MJ/kg, with a standard deviation of 58 MJ/kg. Using the best-characterized data only gives a mean of 220 MJ/kg with a standard deviation of 20 MJ/kg.

1. Smil 2008:

Aluminum from bauxite

190 - 230 MJ/kg

2. Ashby 2009:

200 - 240 MJ/kg

3. CMU EIO LCA:

115 MJ/kg

4. Alcoa: 81 MJ/kg

5. International Aluminum Institute:

84 MJ/kg

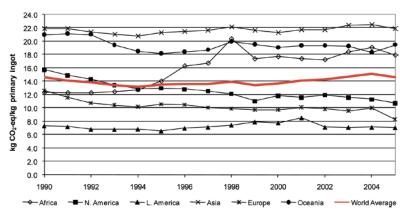
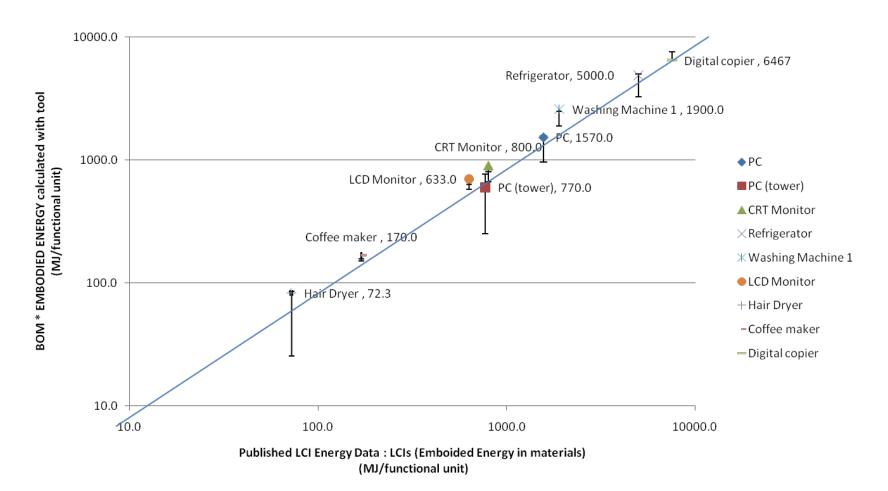


FIGURE 4. Production based GHG intensity of primary aluminum production by region.


Ashby 2009: 11 - 14 kgCO2/kg

Also see debate on CNW's report on 'dust to dust' – Prius vs Hummer

Summary

- Powerful tool All phases, various environmental impacts
 - Easy to pickup hard to master
 - Many applications
 - Sustainable design
 - Supplier / distributor selection
 - Performance measurement and tracking
 - > CSR reporting
- Has challenges
 - Education
 - Data availability and qualification
 - ➤ Vague standards ISO, WRI, PAS2050, EPD, PCR ...
 - > Impact factors
 - Lack of regulation (Picking up in EU)

Comparison of PRODUCTS' MATERIAL EMBOIDED ENERGY DATA: Calculated with BOM tool vs. LCIs Published

Incorporating Values – the difference between LCA and LCI

- Value Laden
- Location dependent
- Depends on self interest
- Knowledge limitations
 - mental models
- Power advantages
 - if fish could vote....

Accuracy Limitations

- Functional unit limitations
- Boundaries need to be clearly stated
- Little Standardization
- Beware closer than ± 10%

Readings and References

- a) Ashby Ch 3, also see Ch 7 and 12 (Refs)
- b) Hendrickson, Lave and Matthews, Chapters 1, 2, and 5, 6, look at Appendix I.
- c) Leontief, Input/Output Economics, pp19 24 (handout)
- d) Sullivan, J., et al, "Life Cycle of US Sedan....."
 1999, p 1-14. (handout)