

Introduction to the concept of available work and exergy

2.83/2.813

T. G. Gutowski Feb 24, 2006

Readings and Handouts

- Ch.2 "Thermodynamics Revised" Jakob de Swaan Arons
- 2. Ch.10 "Exergy" Norio Sato
- 3. Appendix, tables of standard chemical exergy, Szargut
- 4. Derivation of Mixing Entropy, Gutowski

Why available work?

- 1. rigorous framework
- 2. based on 2nd law (lost Vs transformed)
- 3. can account for materials energy potential
- 4. allows combined accounting of fuel and non-fuel materials
- 5. other advantages when dealing with waste heat (quality of waste heat)

Outline

- 1st and 2nd Laws
- Exergy
- Examples
 - hot & cold water, gas expansion & extraction
- Chemical Exergy
 - chemical reactions; burning carbon, and oxidizing Aluminium
 - Iron Ore Processing
- Homeworks

Energy from 1st Law

U = internal energy of molecules and atoms

•
$$E = U + K.E. + P.E. = U + \frac{1}{2}mv^2 + mgz$$

- "isolated" systems $\Delta E=0$, or $\Delta U=0$ (v=const, z=const)
- "closed" system $\Delta U = Q_{in} W_{out}$
- "open system" (mass flow) ...

The 1st Law

$$\Delta U = Q_{in} - W_{out}$$

$$dU = \delta Q_{in} - \delta W_{out}$$

$$\oint dQ - \oint dW = 0$$

Availability

"The First Law states that in every cyclic process either work is converted into heat or heat is converted into work. In this sense it makes no distinction between work and heat except to indicate a means of measuring each in terms of equivalent units. Once this technique of measurement is established, work and heat become entirely equivalent for all applications of the First Law."

Availability

 "The Second Law, on the other hand, marks the distinction between these two quantities by stating that heat from a single source whose temperature is uniform cannot be completely converted into work in any cyclic process, whereas work from a single source can always be completely converted into heat."

Availability

"The efforts of the engineer are very largely directed toward the control of processes so as to produce the maximum amount of work, or so as to consume the minimum amount of it. The success of these efforts can be measured by comparing the amount of work produced in a given process with the maximum possible amount of work that could be produced in the course of a change of state identical with that which occurs in the process." Keenan, 1941

State Variables

$$\oint dU = 0 \qquad \int_{1}^{2} d\phi = \phi_2 - \phi_1$$

$$\oint \frac{dQ}{T} = 0 \qquad \oint d(U + PV) = 0$$

State Variables

- T = temperature
- P = pressure
- V = volume
- U = internal energy
- H = enthalpy (H = U + PV)
- S = entropy

intensive variables

extensive and intensive variables

Enthalpy H=U+PV

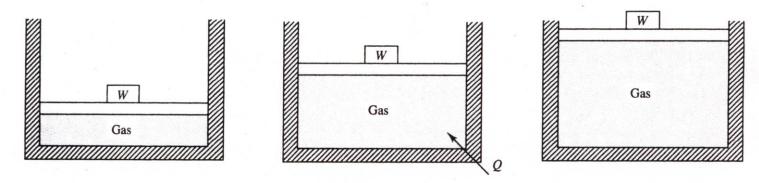
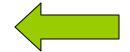


Fig. 4-4 Constant-Pressure Heat Addition

Here the Work done is

 $W = P(V_2 - V_1)$

The First Law can be written as


 $Q = (U+PV)_2 - (U+PV)_1$

The quantity in parenthesis is Enthalpy

H = U + PV

The First Law can be written as

$$Q_{in} = \Delta H$$

Constant Pressure Equilibrium Process

Open flow system

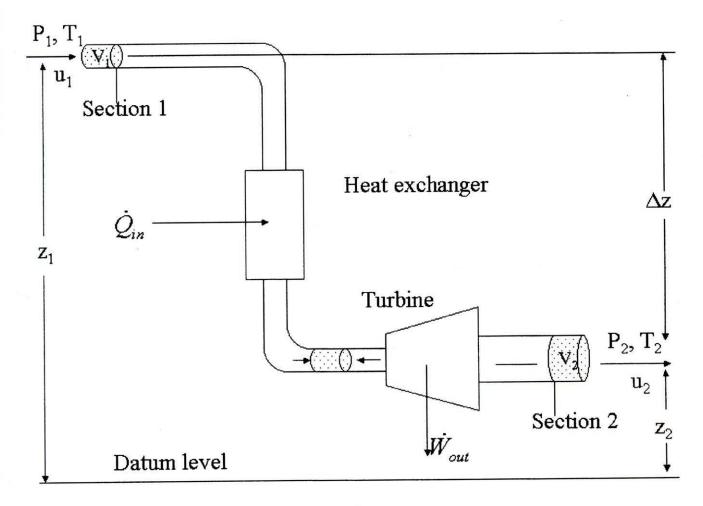
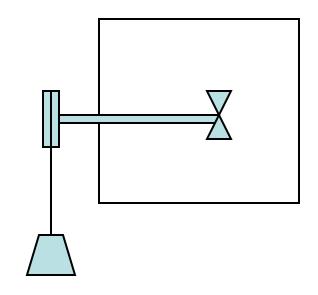


Figure 1 Changes in steady-state flow.

First Law for a Flow System

$$\left(\frac{dU}{dt}\right)_{cv} = \sum_{in} \dot{m}_i \left(h_i + \frac{u_i^2}{2} + gz_i\right)$$

$$-\sum_{out} \dot{m}j \left(h_j + \frac{u_i^2}{2} + gz_j\right)$$

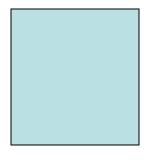

$$+\sum_{out} \dot{Q}_{in} - \sum_{out} \dot{Q}_{out} + \sum_{sh,in} \dot{W}_{sh,in} - \sum_{sh,out} \dot{W}_{sh,out}$$

$$\dot{m}\left(\Delta H + \frac{\Delta u^2}{2} + g\Delta z\right) = \dot{Q}_{in} - \dot{W}_{out}$$

EQ 1

one stream steady state

The Second Law



- ΔW and ΔQ are not equivalent
- something gets lost

Heat Engine

$$Q_{out}$$

$$W_{out} = Q_{in} - Q_{out}$$

$$\eta = \frac{W_{out}}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$$

 T_L

The Second Law

$$\eta = \frac{W_{out}}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}} \qquad \qquad \eta = \frac{T_H - T_L}{T_H}$$

$$\eta = \frac{T_H - T_L}{T_H}$$

$$\frac{Q_{in}}{T_H} = \frac{Q_{out}}{T_L}$$

$$\frac{Q_{in}}{T_H} = \frac{Q_{out}}{T_L} \qquad \oint \frac{dQ}{T} = \frac{Q_{in}}{T_H} - \frac{Q_{out}}{T_L} = 0$$

Entropy: State Variable

$$dS = \frac{dQ}{T}$$

$$\oint dS^{rev} = 0$$

$$\oint dS \ge 0$$

Second Law for a Flow System

$$\left(\frac{dS}{dt}\right)_{cv} = \sum_{in} \dot{m}_i S_i - \sum_{out} \dot{m}_j S_j$$

$$+\sum_{in}\int \frac{\delta \dot{Q}_{k}}{T} - \sum_{out}\int \frac{\delta \dot{Q}_{1}}{T} + \dot{S}_{generated}$$

$$\dot{m}\Delta S + \frac{\dot{Q}_{surr}}{T} + \dot{S}_{generated} = 0$$

one stream steady state

Reversible Work

$$W_{rev} = Q_{in} \left(1 - \frac{T_L}{T_H} \right)$$

$$\int Q_{out}$$

$$W_{rev} = Q_{in} - T_{L} \frac{Q_{in}}{T_{H}}$$

 T_L

Exergy "B" (also "E" and Ex")

$$W_{\text{max}} = Q_{in} - T_o \frac{Q_{in}}{T_H}$$

$$W_{\text{max}} = \Delta H - T_o \Delta S$$

$$B = (H - T_o S) - (H - T_o S)_o$$

Standard ref. values $T_0 = 298.2^{\circ} K$, $P_o = 101.3kPa$

Alternatively, From Flow EQ 1 & 2

$$\dot{m}\left(\Delta H + \frac{\Delta u^2}{2} + g\Delta z\right) = \dot{Q} - \dot{W}_{out}$$

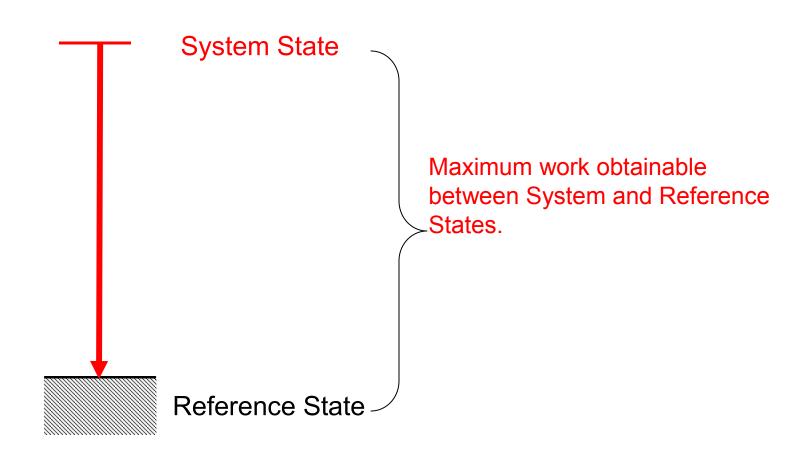
$$\dot{m}\Delta S + \frac{\dot{Q}}{T} + \dot{S}_{generated} = 0$$

eliminate \dot{Q} and set $\dot{S}_{generated} = 0$

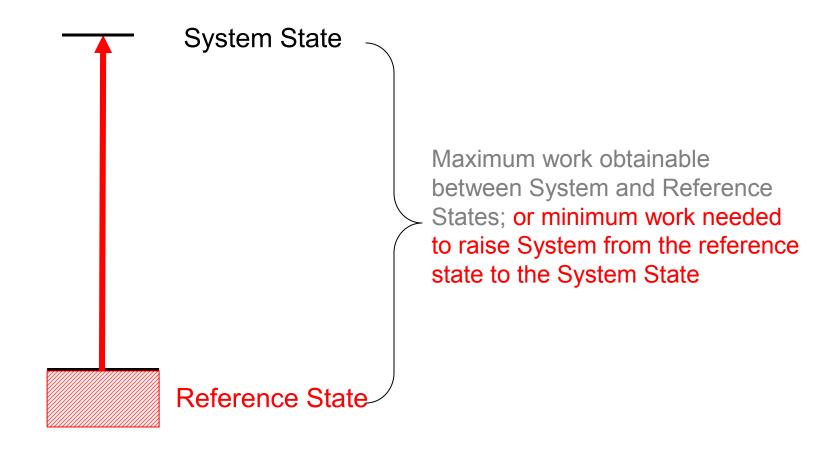
$$\dot{W}_{rev} = \dot{m} \left(\Delta H + \frac{\Delta u^2}{2} + g \Delta z \right) - \dot{m} T_o \Delta S$$

Exergy

For the flow system:

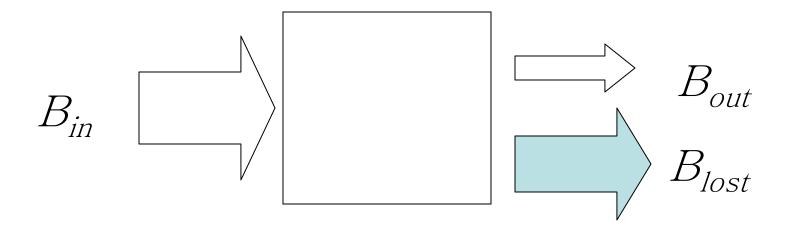

$$B = \frac{W_{\text{max}}}{\dot{m}}$$

$$B = \left(\Delta H + \frac{\Delta u^2}{2} + g\Delta z\right) - T_o\Delta S$$

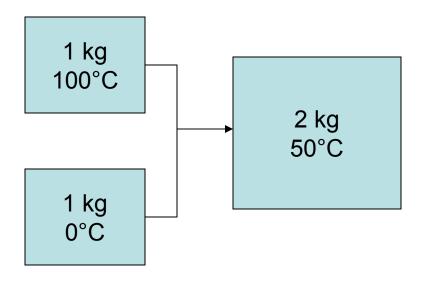

$$B = \frac{W_{\text{max}}}{m}$$

$$B = \Delta H - T_o \Delta S$$

Exergy

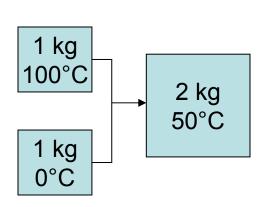

Exergy

Definition of Exergy "B"


"Exergy is the amount of work obtainable when some matter is brought to a state of thermodynamic equilibrium with the common components of the natural surroundings by means of reversible processes, involving interaction only with the above mentioned components of nature" [Szargut et al 1988].

Exergy Accounting

$$B_{in} - B_{out} = B_{lost}$$


Example: mixing hot and cold water

$$1^{st} \text{ Law: } H_1 + H_2 = H_3$$

recall; $\Delta H = \int m C_p \Delta T$

Example: mixing hot and cold water

To calculate the 2nd law property; $\Delta B = \Delta H - T_0 \Delta S$ $T_{ref} = 25$ °C Pressure = constant We need to know the temperature dependence of enthalpy and entropy

temperature and pressure dependence of H and S

$$dH = c_p dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_p \right] dP$$

$$dS = \frac{c_p}{T} dT - \left(\frac{\partial V}{\partial T}\right)_p dP$$

for constant pressure

$$dH = c_{p}dT + \left[V - T\left(\frac{\partial V}{\partial T}\right)_{p}\right]dP$$

$$dS = \frac{c_{p}}{T}dT - \left(\frac{\partial V}{\partial T}\right)_{p}dP$$

calculating ΔH -T₀ ΔS

$$H_1 - T_o S_1 = C_p(75) - 298.2C_p \ln \frac{373.2}{298.2} = 8.1C_p$$

$$H_2 - T_o S_2 = C_p (-25) - 298.2 C_p \ln \frac{273.2}{298.2} = 1.1 C_p$$

$$H_3 - T_o S_3 = 2C_p(25) - 2x298.2C_p \ln \frac{323.2}{298.2} = 2C_p$$

$$B_{in} - B_{out} = B_{lost}$$

$$B_{lost} = (H_2 - T_o S_2) + (H_1 - T_o S_1) - (H_3 - T_o S_3)$$

$$B_{lost} = (8.1 + 1.1 - 2)C_p = 7.2C_p$$

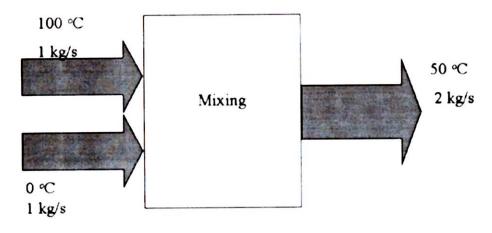


Figure 2 Flow diagram for the mixing of a hot and a cold stream.

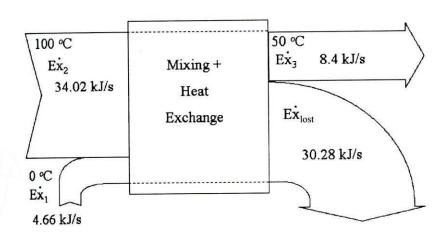
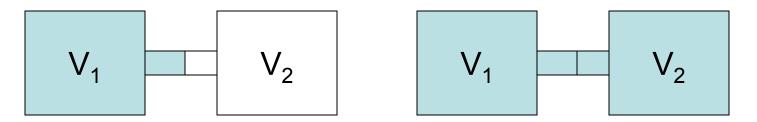



Figure 3 Exergy flow diagram or Grassmann diagram for the example of Fig. 2.

Example: Gas Expansion

Isothermally expansion of n moles of a gas

$$\Delta B = \Delta H - T_0 \Delta S$$

temperature and pressure dependence of H and S

$$T = \text{constant} \qquad \text{ideal gas}$$

$$dH = c_{p} dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_{p} \right] dP$$

$$dS = \frac{c_{p}}{T} dT - \left(\frac{\partial V}{\partial T} \right)_{p} dP$$

T = constant

substitute ideal gas law yields....

Gas Expansion

$$\Delta S = n R \ln \frac{V_1 + V_2}{V_1}$$

$$\Delta B = \Delta H - T_0 \Delta S$$

$$\Delta B = n R T_0 \ln \frac{V_1}{V_1 + V_2}$$

Note
$$B_{lost} = -\Delta B$$

Gas Expansion/Extraction

Note the volume concentrations are:

State 1:
$$c_1 = \frac{n_1}{V_1}$$
; State 2 = $c_2 = \frac{n_1}{V_1 + V_2}$

$$\frac{\Delta S_1}{n_1} = R \ln \frac{c_1}{c_2} = R \ln \frac{c_1}{c_{ref}}$$

Extraction from c_{ref}

$$\Delta S_{extraction} = -R \ln \frac{c_1}{c_{ref}}$$

$$\Delta B_{extraction} = +T_o R \ln \frac{c}{c_{ref}}$$

Chemical Exergy

Material Transformations

- -chemical reaction
 - oxidation, reduction
- physical transformations
 - mixing
 - separation
 - extraction
 - disposal

Chemical Reactions

stoichiometric mass balance

$$v_a R_a + v_b R_b + \dots \rightarrow v_j P_j + v_k P_k + \dots$$

exergy "balance"

$$v_{a}B_{R_{a}} + v_{b}B_{R_{b}} + \dots - v_{j}B_{P_{j}} - v_{k}B_{P_{k}} = B_{lost}$$

where exergy B is given in kJ/mole

Example: Burning Carbon

$$C + O_2 \rightarrow CO_2$$

$$B_{C}$$
 + B_{O2} - $B_{CO_{2}}$ = ΔB
410.3 kJ + 3.97 kJ - 19.9 kJ = 394.4kJ
mole mole

The heating value of carbon is

$$\frac{394.4 \text{ kJ}}{\text{mole of carbon}} = 32.9 \text{ MJ}$$

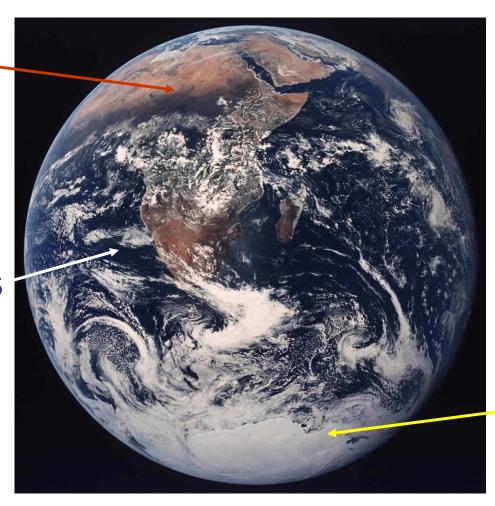
Example: Oxidation of Aluminum

$$2Al + \frac{3}{2}O_2 \longrightarrow Al_2O_3$$

$$2 \times 888.4 \frac{kJ}{mole} + \frac{3}{2} \times 3.97 \frac{kJ}{mole} - 200.4 \frac{kJ}{mole} = B_{lost}$$

$$B_{lost} = (1776.8 + 6.0 - 200.4) = 1582.4 \frac{kJ}{mole(Al_2O_3)}$$

See Appendix of Szargut for exegy values

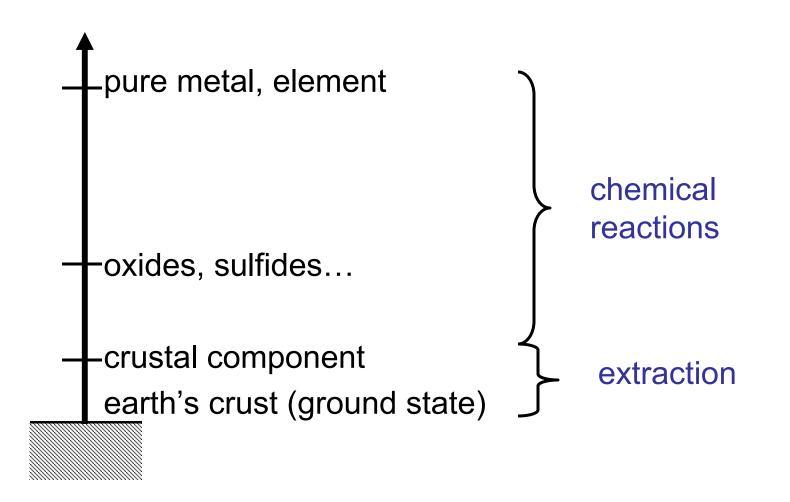

Materials can do work?

Chemical Properties referenced to the "environment"

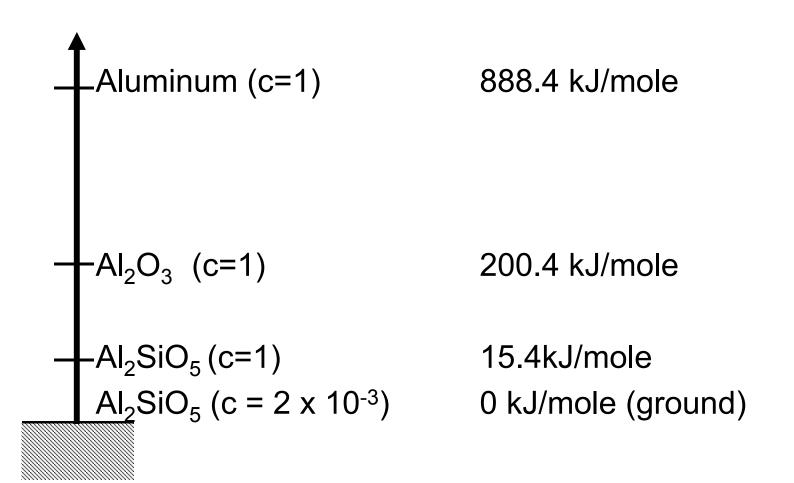
Crust

Oceans

COMPOSITIO	N OF	AIR
O	Complete	Cont


Component of Air	Symbol	Content – %Volume
Component of Air Nitrogen Oxygen Argon Argon Carbon dioxide Neon Helium Krypton Sulfur dioxide Methane Hydrogen Nitrous oxide Xenon Ozone Ozone – Winter Nitrogen dioxide lodine Carbon monoxide Ammonia	Symbol N2 O2 Ar CO2 NE He Kr SO2 CH4 H2 N2O Xe O3 NO2 I2 CO NH3	Content – %Volume 78.084 percent 20.947 percent 0.934 percent 18.2 parts/million 1.1 parts/million 1.1 parts/million 2.0 parts/million 0.5 parts/million 0.5 parts/million 0.0 parts/million 0.0 parts/million 0.10 to trace 0.0 to trace
	l .	

The above table is an average for clean, dry air at sea level. 1 part/million = 0.0001 percent.


Atmosphere

$$T_0 = 298.2 \text{ K}, P_0 = 101.3 \text{ kPA}$$

Exergy Reference System

Exergy Reference System

Example; making pure iron from the crust

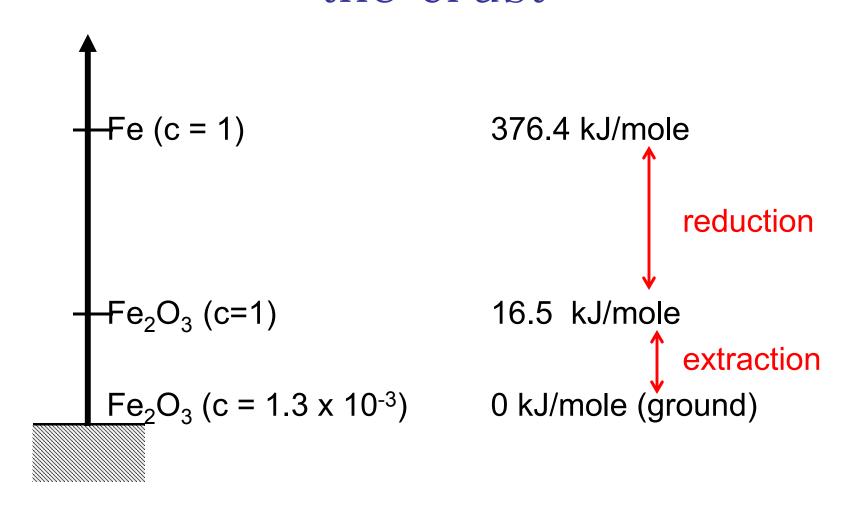


Table 2.8 Solid reference species and their conventional average concentration in the external layer of the earth crust

	į	9	Refe	Reference species		Standard
	the li	Component or the lithosphere		Conventional	Standard	exergy of the
Chemical element	Formula	Mass fraction	Formula	mole fraction x_m	exergy, kJ/mol	element, kJ/mol
Al (s)	Al ₂ O ₃	0.152	Al ₂ SiO ₅ (sillimanite)	2×10^{-3}	15.4	888.4
Ba	BaO	5.1×10^{-3}	-	ı	ı	ı
Ca	CaO	5.1×10^{-2}	1	1	1	1
Ü	ū	4.5×10^{-4}	1	1	1	ı
Co (s)	ර	4×10^{-5}	Co ₃ O ₄	2×10^{-7}	38.2	265.0
Cr (s)	Cr ₂ O ₃	5.2×10^{-4}	Cr ₂ O ₃ (s)	4×10^{-7}	36.5	544.3
Fe (s)	FeO	3.72×10^{-2}	(a)	13 × 10-3	16.5	176 1
	Fe_2O_3	3.10×10^{-2}	Fe ₂ O ₃ (3)	01 × 6.1	10.3	5.0.6
X	K20	3.11×10^{-2}	1	1	1	t
Mg (s)	MgO	3.45×10^{-2}	CaCO, · MgCO,	2.3×10^{-3}	15.1	633.8
Mn (s)	MnO	1.18×10^{-3}	MnO ₂	2×10^{-4}	21.1	482.3
Za	Na_2O	3.71×10^{-2}	1	i	1	1
P (s)	P ₂ O ₅	2.85×10^{-3}	Ca ₃ (PO ₄) ₂	4×10^{-4}	19.4	875.8
S	SO,	2.6×10^{-4}	1	1	1	ı
Sb (s), III	Sp	1×10^{-6}	Sb ₂ O ₅	7×10^{-10}	52.3	435.8
Si (s)	SiO ₂	0.591	SiO ₂ (s)	0.472	1.9	854.6
Sn (s), white	Sn	4×10^{-5}	SnO ₂ (s)	8×10^{-6}	29.1	544.8
Ti (s), 11	TiO ₂	1.03×10^{-2}	TiO ₂ (s), III	1.8×10^{-4}	21.4	6.906
U (s), III	n	4×10^{-6}	UO, (s)	2×10^{-8}	43.9	1190.7
(s) ^	V_2O_5	2.3×10^{-4}	$V_2O_5(s)$	2×10^{-6}	32.5	712.1

Extraction from the crust

Extracting Fe_2O_3 from $c = 1.3x10^{-3}$ (crust) to c = 1

$$B = T_o R \ln \frac{1}{1.3 \times 10^{-3}}$$

$$B = 298.2^{\circ} K \times 8.314 \frac{J}{mole^{\circ} K} \times \ln \frac{1}{1.3 \times 10^{-3}} = 16.5 \frac{kJ}{mole}$$

Reduction of Fe₂O₃ (Hematite)

$$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$$

$$2 \times 16.5 + 3 \times 410.3 - 4 \times 376.4 - 3 \times 19.9 =$$

$$B_{lost} = -301.4 \text{ kJ}$$

this is an endothermic reaction

i.e. minimum energy required to reduce 4 mole of hematite

Iron Ore Reduction

Recall C + $O_2 \rightarrow CO_2$ produces 394.8 kJ/mole C

We need
$$\frac{301.4}{394.8} = 0.76$$
 moles of carbon

$$2Fe2O_3 + 3.76C + 0.76O_2 \rightarrow 4Fe + 3.76 CO_2$$

Iron Ore Reduction

but the efficiency is only 33% therefore the actual reaction is

```
2Fe_2O_3 + 12.42C + 9.42O_2 \rightarrow 4Fe + 12.42CO_2

33kJ + 5095.9 + 37.7 - 1505.6 - 247.2kJ =

3,413.8 \text{ kJ for 4 mole of Fe}

this is 15.2 MJ/kg (Fe)
```

Iron Ore Reduction

Fuel (C) Intensity =
$$\frac{12.42 \times 394.8}{4 \times 55.85g} = \frac{4.903MJ}{.2234kg} = 22\frac{MJ}{kg}$$

$$CO_2$$
 Intensity = $\frac{12.42 \times 44}{4 \times 55.85} = 2.5 \frac{kg \ CO_2}{kg \ Fe}$

Exergy value of pure Fe is 376.4 kJ/mole = 6.7 MJ/kg

Summary for Iron Ore

Energy data from Smil

 Table 6
 Ranges of Energy Densities of Common Fuels and

 Foodstuffs

Energy density	(MJ/kg)
Hydrogen	114.0
Gasolines	46.0-47.0
Crude oils	42.0-44.0
Pure plant oils	38.0-37.0
Natural gases	33.0-37.0
Butter	29.0-30.0
Ethanol	29.6
Best bituminous coals	27.0-29.0
Pure protein	23.0
Common steam coals	22.0-24.0
Good lignites	18.0-20.0
Pure carbohydrates	17.0
Cereal grains	15.2–15.4
Air-dried wood	14.0–15.0
Cereal straws	12.0-15.0
Lean meats	5.0-10.0
Fish	2.9-9.3
Potatoes	3.2-4.8
Fruits	1.5-4.0
Human feces	1.8-3.0
Vegetables	0.6-1.8
Urine	0.1-0.2

Table 8 Typical Energy Costs of Common Materials (MJ/kg)

Material	Energy cost	Made or extracted from
14	-	extracted from
Aluminum	227-342	Bauxite
Bricks	2-5	Clay
Cement	5–9	Clay and limestone
Copper	60-125	Sulfide ore
Glass	18-35	Sand, etc.
Iron	20-25	Iron ore
Limestone	0.07-0.1	Sedimentary rock
Nickel	230-70	Ore concentrate
Paper	25-50	Standing timber
Polyethylene	87–115	Crude oil
Polystyrene	62-108	Crude oil
Polyvinylchloride	85–107	Crude oil
Sand	0.08-0.1	Riverbed
Silicon	230-235	Silica
Steel	20-50	Iron
Sulfuric acid	2–3	Sulfur
Titanium	900-940	Ore concentrate
Water	0.001-0.01	Streams, reservoirs
Wood	3-7	Standing timber

Exergy in Mixing Substances

$$\Delta B_{mix} = \Delta H_{mix} - T_{\circ} \Delta S_{mix}$$
for a perfect mixture (athermal)
$$\Delta H_{mix} = 0$$

$$\Delta B_{mix} \cong -T_{\circ} \Delta S_{mix} = RT_{\circ} \sum x_{i} \, \ell n \, x_{i}$$

$$\Delta S_{mix} = R \ln \frac{\Omega_{mixed}}{\Omega_{separated}}$$

Summary

- Exergy = Available work referred to the "dead state"
- Both fuel and non-fuel materials have exergy equivalents
- Exergy is not conserved

$$B_{in} - B_{out} = \Delta B_{lost}$$

Homeworks

- 1. How much energy is required for photosynthesis?
- 2. How much energy is produced from auto-respiration?
- 3. How much energy is produced from burning octane? methane? methanol? hydrogen? How much CO₂ is generated for each?

Applications

- Exergy Analysis of Industry (Ayres et al)
- Exergy Analysis of Natural Systems (Bakshi)
- Exergy of Mfg Processes (YOU!)
- Exergy Analysis of Recycling Flows