Introduction to the "Exergy Concept

2.83/2.813 T. G. Gutowski

Readings for Sustainability discussion on Wed Feb 26

Торіс	Author	Pages of text	Source
Ecology	Rockstrom	~3	(Nature)
Economics	Dasgupta	~6	(Roy. Soc. B)
Triple bottom	Slaper	~7	(on line)
line		(space½)	
Easter Island	Diamond	~3	(Discover
			Magazine)
Chaco Canyon	Browswimmer	~4	(Ecocide)
Tragedy of the	Hardin	~6	(Science)
Commons			
Total Reading		~29 pages	

Readings

- 1. Ch.2 Thermodynamics Revisited (p 7-13), and
- Ch 6 Exergy, a Convenient Concept (p 59-62), Jakob de Swaan Arons, 2004
- Ch 6 Thermodynamic Analysis of Resources Used in Mfg Processes, Gutowski & Sekulic, in Thermodynamics and the Destruction of Resources "TDR" (Bakshi, Gutowski & Sekulic) 2011
- Appendix, Tables of Standard Chemical Exergy,
 Szargut, Morris & Steward, 1988

Why Exergy?

- Rigorous
- Explicitly shows loses (unlike energy)
- Can aggregate materials and energy resources
- Provides theoretical comparison
- Can analyze "new ideas"

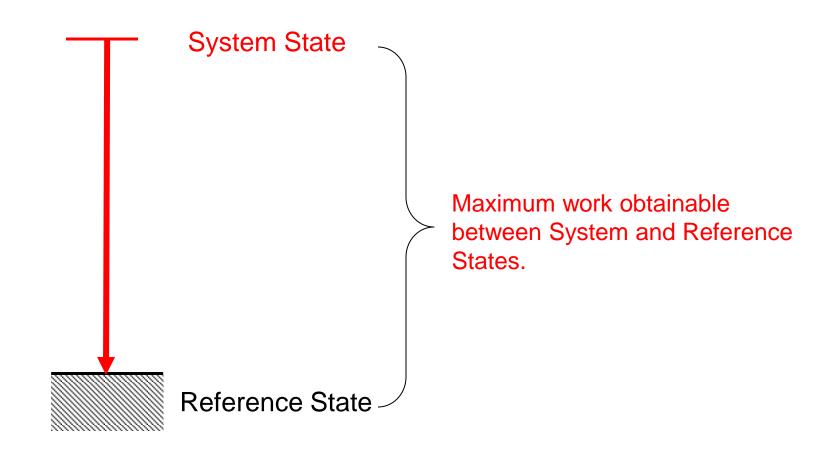
Example Problems

	Technology	Not	Benefit	Potential
		sure		limitation
1	Electric cars			
2	LED Light bulbs			
3				
4	Lime in the ocean			
5	Carbon capture and storage			
6	Sulfate spray in the atmosphere			
7	Hydrogen as energy source			
8	Aluminum fuel cell as energy source			
9	Ethanol from biomass			
10	Iron production from charcoal			
	instead of from coke			

Exergy Accounting

- Exergy Units: Joules J, rate in Watts, W
- Exergy symbols: *B*, *Ex*, *X*, and *b*, *e*_x, *x*
- Similar quantities: "Availability" by Keenan, 1941 and "Available Energy", Ω^R, by Gyftopoulos and Beretta, 1991

Notation

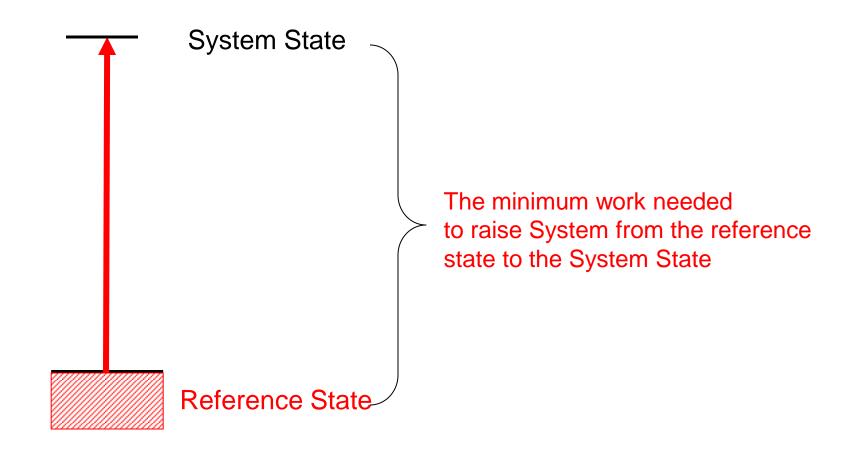

- Ex = B = exergy
- $\phi = H T_o S = availability function$
- $B = \phi \phi_o = exergy$
- G = H TS = Gibbs free energy

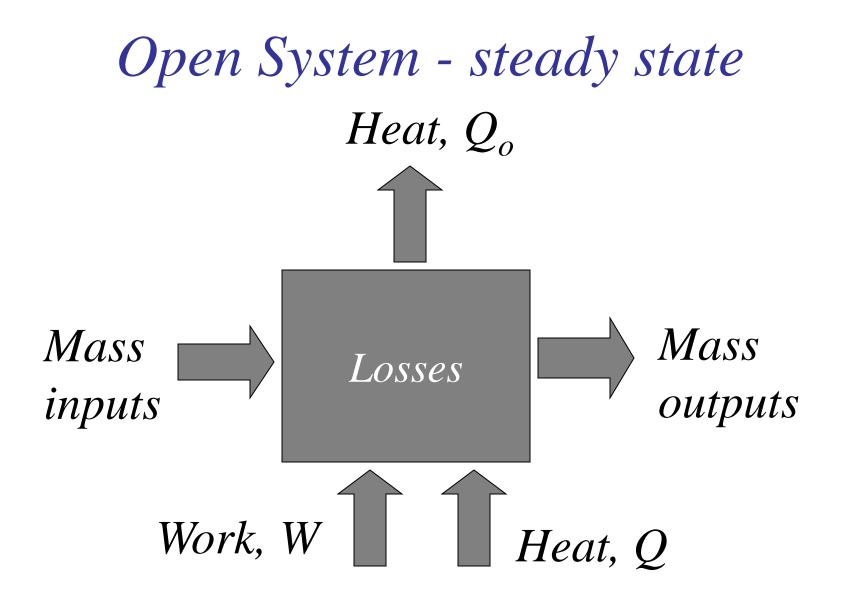
$$\mu_{i} = \left[\frac{\partial G}{\partial n_{i}}\right]_{p,T,n_{j}} = chemical \ potential$$

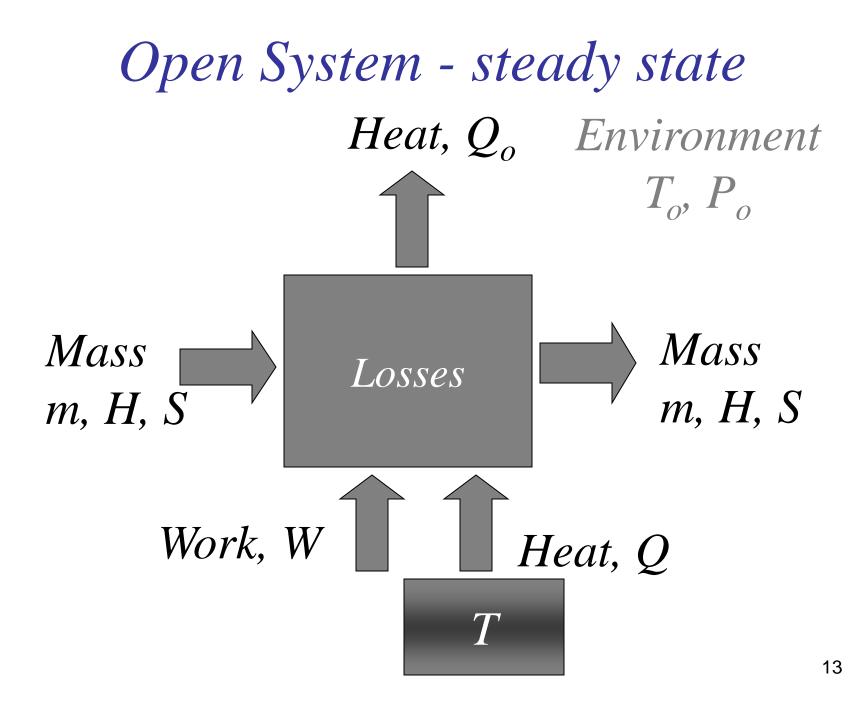
The subscript "o" indicates the reference state

Definition #1 of Exergy

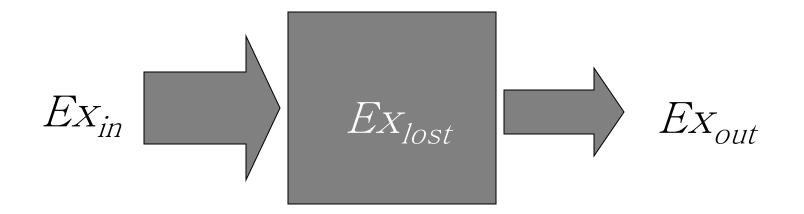
"Exergy is the amount of work <u>obtainable</u> when some matter is brought to a state of thermodynamic equilibrium with the common components of the natural surroundings by means of <u>reversible</u> <u>processes</u>..." [Szargut et al 1988].





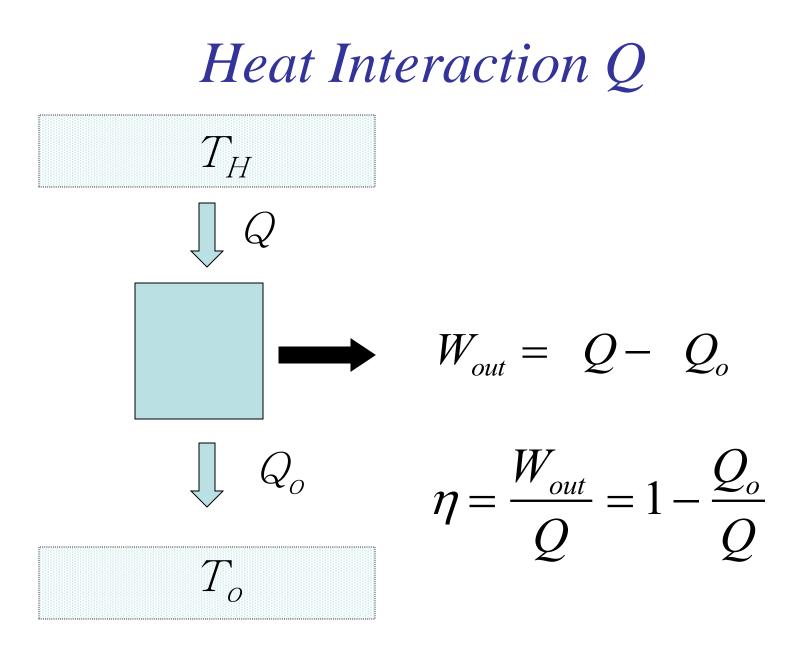

Definition #2 Exergy

Exergy is the work <u>required to raise</u> some matter from a state of thermodynamic equilibrium with the common components of the natural surroundings to a higher state by means of <u>reversible processes</u>.



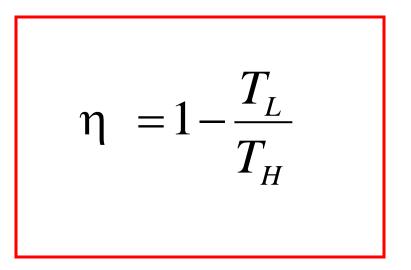
Aggregated Exergy Accounting; open system, steady state

 $Ex_{in} = Ex_{out} + Ex_{lost}$


Interactions and Energy Carriers

- Energy E
- Work, W
- Heat, *Q*
- Mass Flow, *dm/dt*

 U, mV^2, mgz, pv


- Exergy
- Ex(work) = W
- Ex(heat) = Q(1-To/T)
- Ex(mass flow) =

 mV^2 , mgz, and

Carnot's "Reversible" Heat Engine

$$\eta_{reversible} = f(T_H, T_L) \qquad \frac{Q_{out}}{Q_{in}} = \frac{T_L}{T_H}$$

Maximum Work Output

$$W_{out}^{\max} = Q_{in} \left(1 - \frac{T_L}{T_H}\right)$$

- Q_{in} is at T_H , let T_L be T_{ref} or T_o
- This gives the "available energy" of a heat interaction at T_H in reference T_o.
- Work and Heat are no longer equivalent!

Exergy "Ex" of Heat Interaction

$$E_X^Q = Q(1 - \frac{T_o}{T})$$

- Exergy, "Ex" is the available energy w.r.t. a reference environment, T₀, and P₀...
- Ex(work) = W; $Ex(heat) = Q(1-T_0/T)$

Availability

"The First Law states that in every cyclic process either work is converted into heat or heat is converted into work. In this sense it makes no distinction between work and heat except to indicate a means of measuring each in terms of equivalent units. Once this technique of measurement is established, work and heat become entirely equivalent for all applications of the First Law."

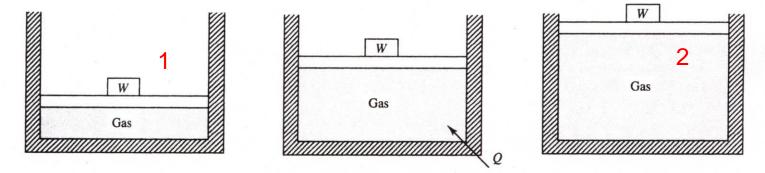
Availability

 "The Second Law, on the other hand, marks the distinction between these two quantities by stating that heat from a single source whose temperature is uniform cannot be completely converted into work in any cyclic process, whereas work from a single source can always be completely converted into heat."

Availability

"The efforts of the engineer are very largely directed toward the control of processes so as to produce the maximum amount of work, or so as to consume the minimum amount of it. The success of these efforts can be measured by comparing the amount of work produced in a given process with the maximum possible amount of work that could be produced in the course of a change of state identical with that which occurs in the process." 22 Keenan, 1941

Review of basic concepts


- Enthapy
- Entropy
- Heat interaction
- Work interaction

Enthalpy, H

- State property of a material
- H = U + PV
- h = u + Pv
- Condensed phase: $\Delta h = c_{ave} \Delta T + v \Delta P$
- *Gas phase:* $\Delta h = c_p \Delta T$
- Phase change $\Delta h = h_{fg}$, vaporization

See Ch 6 for a discussion of condensed and gas phases

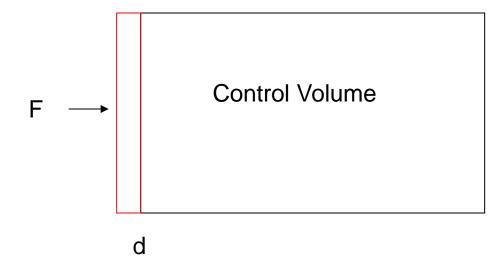
Enthalpy H=*U*+*PV*

Here the Work done is

 $W = P(V_2 - V_1)$

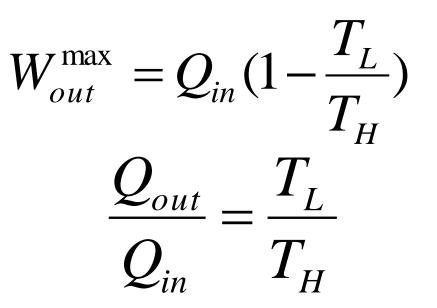
H = U + PV

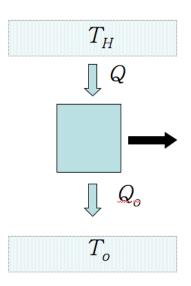
 $Q_{in} = \Delta H$


The First Law can be written as $Q = (U+PV)_2 - (U+PV)_1$

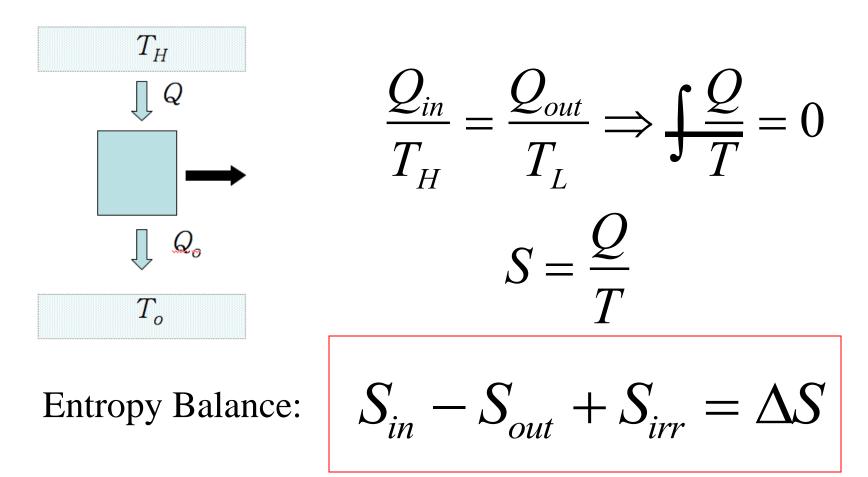
The quantity in parenthesis is Enthalpy

The First Law can be written as


$$U + Pv + \frac{1}{2}mV^{2} + mgz = H + \frac{1}{2}mV^{2} + mgz$$

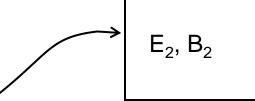


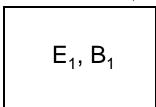
$$W_{boundary} = Fd = Pv$$


Entropy-system property

Recall from Carnot reversible cycle

Reversible Carnot Cycle


Entropy-system property


$$E_X^Q = Q(1 - \frac{T_o}{T}) = Q - T_o S$$

$$S = \frac{1}{T_o}(Q - Ex)$$

i.e. entropy written this way shows it is a measure of something that is not available. See Gyftopoulous & Beretta, 2005

Energy, E and Exergy, B = Ex

e.g. For an spontaneous irreversible process between states 1 and 2 there is a loss of ability to do work i.e. B1-B2>0, while energy is conserved, E1-E2 = 0. For the reversible process B1-B2 = E1-E2 = 0

 $B_1 - B_2 = E_1 - E_2$ reversible process $B_1 - B_2 > E_1 - E_2$ irreversible process

Gyftopoulos and Beretta, 2005 p 216, or TDR p22

Define Entropy

$$S_{1} = S_{o} + \frac{1}{C_{R}} \Big[\Big(E_{1} - E_{o} \Big) - (B_{1} - B_{o}) \Big]$$

- They show $C_R = T_R = T_O$
- Entropy is a Property
- Entropy is a measure of something lost

Gyftopoulos and Beretta, 2005 p217, or TDR p23

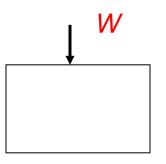
Entropy Difference

$$S_2 - S_1 = \frac{1}{C_R} \Big[\Big(E_2 - E_1 \Big) - (B_2 - B_1) \Big]$$

- $\Delta S = 0$, reversible process
- $\Delta S > 0$, irreversible process

Gyftopoulos and Beretta, 2005 p218, or TDR p23

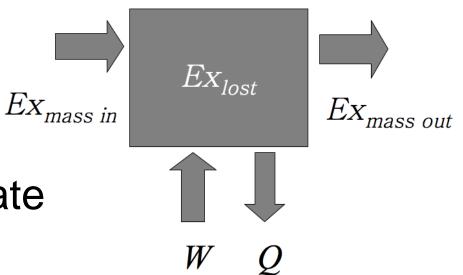
Example, Heat Interaction $P_{Q, T}$ T T T_{0} $F_{0} = F_{1} + Q$

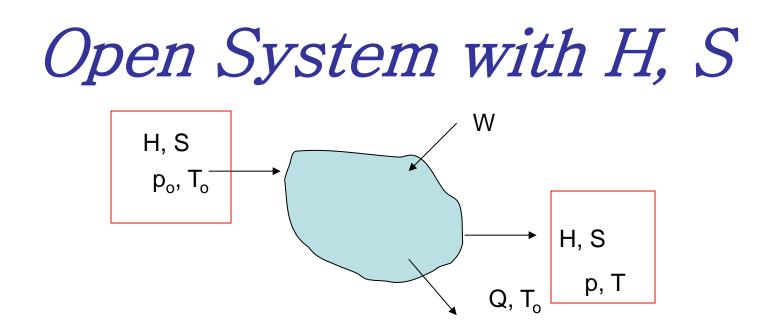

$$E_2 = E_1 + Q$$

$$B_2 = B_1 + Q(1 - T_0/T)$$

$$\Delta S = (1/T_0)(Q - Q + Q(T_0/T)) = Q/T$$

$$\Delta S = Q/T$$


Example, Work Interaction



$$E_2 = E_1 + W$$
$$B_2 = B_1 + W$$
$$\Delta S = (W - W) = 0$$

Putting this all together...

- Define system boundaries, inputs, outputs
- Balance mass
- Balance energy
- Balance entropy
- Simplify to steady state

Consider the Work to bring the system from the reference environment at standard conditions, T_o , p_o to the state at T, p

See Ch 6 de Swaan Arons

From EQ 1 & 2(Ch 6), de Swaan Arons

$$\dot{H}_{in} - \dot{H}_{out} - \dot{Q}_{out} + \dot{W}_{in} = 0$$

$$\dot{S}_{in} - \dot{S}_{out} - \frac{\dot{Q}_{out}}{T_o} + \dot{S}_{generated} = 0$$

$$\dot{\mathbf{W}} = \Delta \dot{H} - T_o \Delta \dot{S} + T_o \dot{S}_{generated}$$

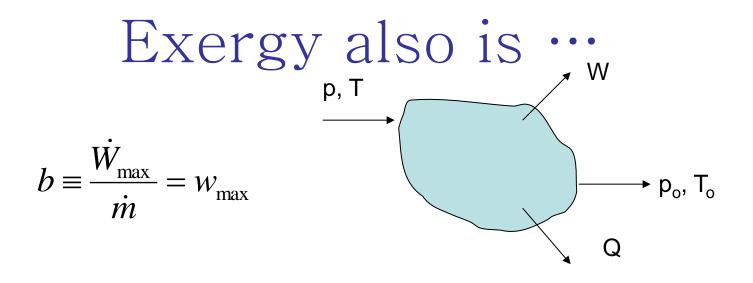
Steady State Work to bring system from P_o , T_o to P, T

Minimum Work = Exergy

$$W_{\min} = \frac{\psi_{rev}}{w} = \Delta H - T_o \Delta S$$

= $(H_{p,T} - T_o S_{p,T}) - (H_{p_o,T_o} - T_o S_{p_o,T_o})$
$$B = (H - T_o S) - (H - T_o S)_o$$

$$W_{\min} = \frac{\dot{W}_{rev}}{\dot{m}} = B_{out} - B_{in}$$


Lost Work & Lost Exergy

Recall:

$$\dot{\mathbf{W}} = \dot{B}_{out} - \dot{B}_{in} + T_o \dot{S}_{generated}$$

Let:
$$\dot{W} = \dot{W}_{min} + W_{lost}$$
 then

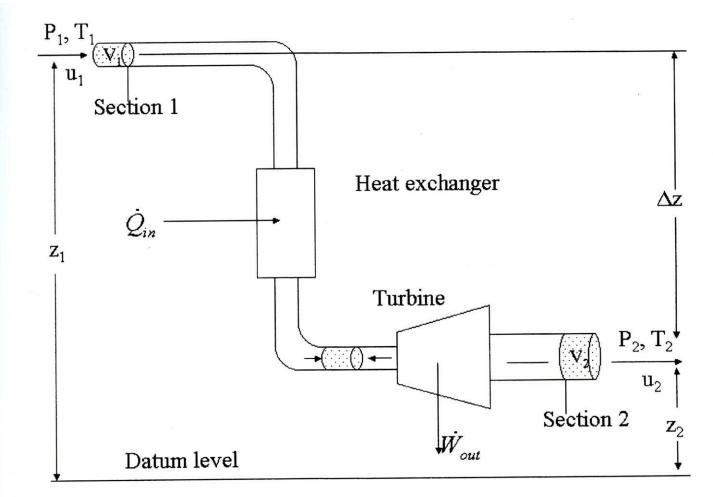
$$\dot{\mathbf{W}}_{lost} = \dot{\mathbf{B}}_{lost} = T_o \dot{S}_{generated}$$

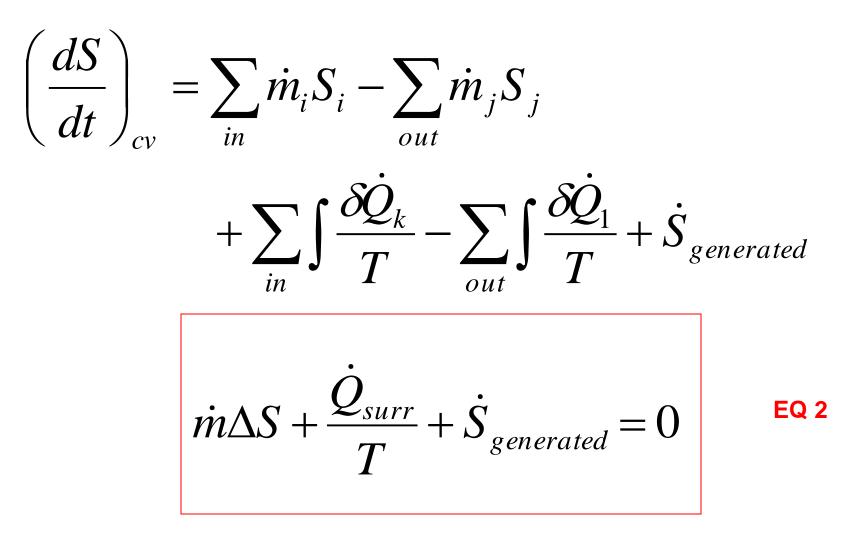
$$B = (H - T_o S) - (H - T_o S)_o$$

... the <u>maximum</u> amount of work that can be obtained from a system in reference to the environment at standard conditions, T_o , P_o

Standard ref. values $T_0 = 298.2^{\circ} K$, $P_o = 101.3 kPa$

Open flow system




Figure 1 Changes in steady-state flow.

De Swaan Arons

First Law for a Flow System

one stream steady state

Second Law for a Flow System

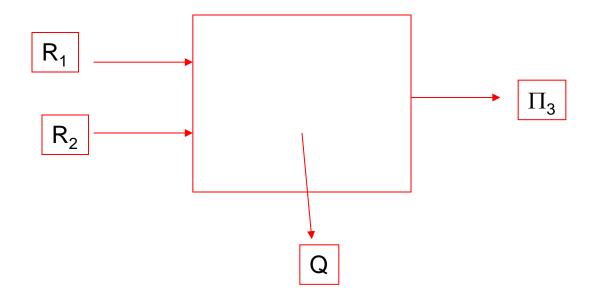
From EQ 1 & 2

$$\dot{m}\left(\Delta H + \frac{\Delta u^2}{2} + g\Delta z\right) + \dot{Q} - \dot{W}_{out} = 0$$

$$\dot{m}\Delta S + \frac{\dot{Q}}{T_0} + \dot{S}_{generated} = 0$$

$$\dot{W}_{rev} = \dot{m} \left(\Delta H + \frac{\Delta u^2}{2} + g \Delta z \right) - \dot{m} T_o \Delta S$$

Physical and Chemical Exergy


- $B = B^{ph} + B^{ch}$
- $B^{ph}(T=T_o, p=p_o, \mu=\mu*\neq\mu_o)=0$ - this is the "restricted dead state"

•
$$B^{ch}(\mu * = \mu_{\Box}) = 0$$

• when $B = B^{ph} + B^{ch} = 0$

- this is the "dead state"

Chemical Reaction, at T_o , p_o $n_1R_1 + n_2R_2 \rightarrow n_3\Pi_3$

Chemical Reactions

stoichiometric mass balance
$$v_a R_a + v_b R_b + \dots \rightarrow v_j \Pi_j + v_k \Pi_k + \dots$$

exergy "balance"

$$v_a b_{R_a} + v_b b_{R_b} + \dots - v_j b_{\Pi_j} - v_k b_{\Pi_k} = B_{lost}$$

where exergy b is given in kJ/mole

Thank you Jan Szargut

APPENDIX 1. STANDARD CHEMICAL EXERGY

$(T_n = 298.15 \text{ K}, p_n = 101.325 \text{ kPa})$

Source: Szargut, J., Egzergia. Poradnik obliczania I stosowania, Widawnictwo Politechniki Shlaskej, Gliwice 2007.

Substance	State	Molecular mass	Enthalpy of devaluation	Standard chemical exergy
		M, kg/kmol	D°, kJ/mol	$e^{o}_{x,ch}$, kJ/mol
Al	S	26.9815	930.9	795.7
Al ₄ C ₃	S	143.959	4694.51	4216.2
AlCl ₃	S	133.3405	467.18	352.2
Al_2O_3	s. α corundum	101.9612	185.69	15.0
Al ₂ O ₃ •H ₂ O	s. boermite	119.9765	128.35	9.4
$Al_2O_3 \cdot 3H_2O$	s. gibbsite	156.0072	24.13	24.1
Al_2S_3	s	150.155	3313.81	2705.3
$Al_2 (SO_4)_3$	S	342.148	596.80	344.3
Al ₂ SiO ₅	s. andalusite	162.046	28.03	9.2
Al ₂ SiO ₅	s. kyanite	162.046	25.94	12.9
Al ₂ SiO ₅	s. sillimanite	162.046	0	15.3
Al ₂ SiO ₅ •(OH) ₄	s. kaolinite	258.1615	68.25	12.0
$3Al_2O_3 \cdot 2SiO_2$	s. mullite	426.0536	630.11	63.2

Also see: http://www.exergoecology.com/excalc

Example: Burning Carbon

$$C + O_2 \rightarrow CO_2$$

$$B_C + B_{O2} - B_{CO_2} = \Delta B$$

$$410.3 \underline{kJ} + 3.97 \underline{kJ} - 19.9 \underline{kJ} = 394.4 \underline{kJ}$$
mol mol mol mol

The maximum work you can get out of one mol of carbon is

<u>394.4 kJ</u>	=	32.9	<u>MJ</u>
mol of carbon			kg

These exergy values come from Szargut's Appendix Tables

Compare this with reality

- The composition of coal...
- The source of oxygen
- The output gases and particulates
- Gibbs Free Energy of formation for CO2
- Published values for the heating values for coal

Burning Octane $2C_8H_{18(I)} + 25O_{2(g)} \rightarrow 16CO_{2(g)} + 18H_2O_{(g)}$

 $2(5413.1) + 25(3.97) - 16(19.87) - 18(9.5) = \Delta B$

 $\Delta B = 10,436.53 \text{ kJ/2}$ mols of octane

$$\frac{10,436.53}{(2[(8 \times 12) + 18] = 228g)} = \frac{45.8 \text{ MJ}}{\text{kg}}$$

Ashby gives the "energy intensity" of gasoline as 45MJ/kg p45

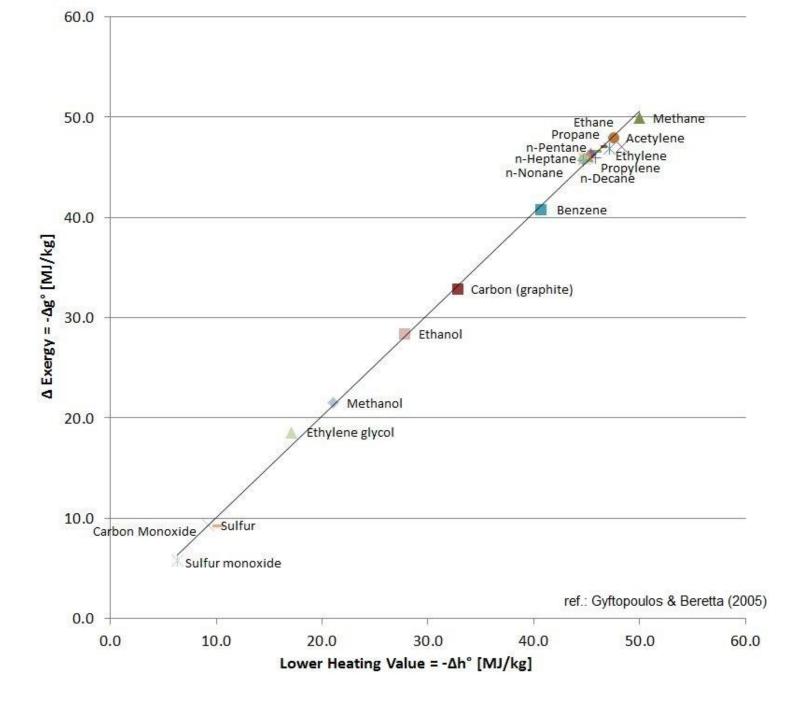

606 Combustion

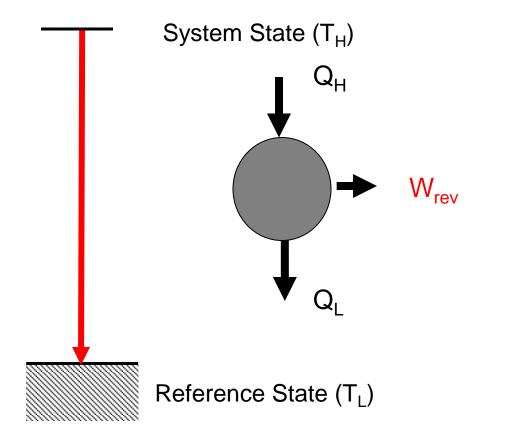
TABLE 31.7. Values of enthalpy, Gibbs free energy, and entropy of combustion of fuels at standard temperature, $T_o = 25^{\circ}$ C, and pressure, $p_o = 1$ atm.^a

		М	Δh^{o}	$\Delta g^{ m o}$	Δs^{o}	$rac{\Delta h^{\mathrm{o}}-\Delta g^{\mathrm{o}}}{\Delta g^{\mathrm{o}}}$	
Fuel	Formula	$\frac{kg}{kmol}$	$\frac{MJ}{kg}$	$\frac{MJ}{kg}$	kJ kg K	%	
Hydrogen	H ₂	2.016	-120.0	-113.5	-22.0	+5.8	
Carbon (graphite)	С	12.011	-32.8	-32.9	0.2	-0.2	
Methane	CH_4	16.043	-50.0	-49.9	-0.3	+0.2	
Acetylene	C_2H_2	26.038	-48.3	-47.1	-3.7	+2.4	
Ethylene	C_2H_4	28.054	-47.2	-46.9	-1.1	+0.7	
Ethane	C_2H_6	30.07	-47.5	-48.0	1.5	-1.0	
Propylene	C_3H_6	42.081	-45.8	-45.9	0.4	-0.3	
Propane	C_3H_8	44.097	-46.4	-47.1	2.3	-1.5	
<i>n</i> -Butane	C_4H_{10}	58.12	-45.8	-46.6	2.7	-1.7	
<i>n</i> -Pentane	C5H12	72.15	-45.4	-46.3	2.9	-1.9	Gyftopoulos
Benzene	C_6H_6	78.114	-40.6	-40.8	0.5	-0.4	& Beretta
<i>n</i> -Hexane	$C_{6}H_{14}$	86.18	-45.1	-46.1	3.1	-2.0	a Derella
<i>n</i> -Heptane	$C_{7}H_{16}$	100.21	-45.0	-45.9	3.2	-2.1	Dover, 2005
n-Octane	$C_{8}H_{18}$	114.232	-44.8	-45.8	3.3	-2.2	
Isooctane	C ₈ H ₁₈	114.232	-44.7	-45.8	3.7	-2.4	P 606
<i>n</i> -Nonane	C_9H_{20}	128.26	-44.7	-45.7	3.4	-2.2	
<i>n</i> -Decane	$C_{10}H_{22}$	142.29	-44.6	-45.7	3.5	-2.3	
Carbon monoxide	CO	28.01	-10.1	-9.2	-3.1	+10.1	
Methanol	CH ₃ OH	32.042	-21.1	-21.5	1.4	-1.9	
Ethanol	C_2H_5OH	46.069	-27.8	-28.4	2.1	-2.2	
Ethylene glycol	$(CH_2OH)_2$	62.07	-17.1	-18.6	5.1	-8.1	
Sulfur	S	32.064	-9.2	-9.3	0.3	-0.9	
Sulfur monoxide	SO	48.063	-6.3	-5.8	-1.6	+8.5	

Source: Data from R. C. Weast, editor, CRC Handbook of Chemistry and Physics, 66th ed., CRC Press, Boca Raton, Fla., 1985.

^aEach constituent before and after combustion is assumed to be in its ideal-gas state at T_{o} and p_{o} .

Example: Oxidation of Aluminum

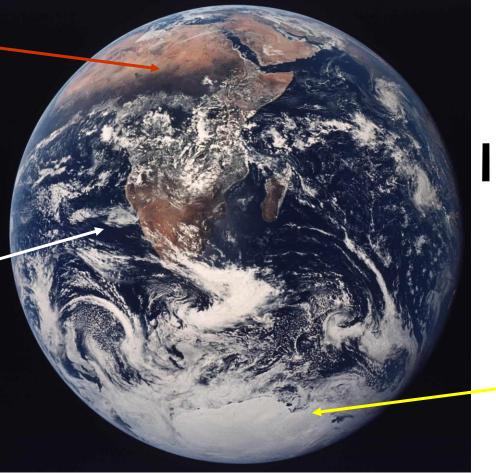

$$2Al + \frac{3}{2}O_2 \rightarrow Al_2O_3$$
$$2 \times 888.4 \frac{kJ}{mol} + \frac{3}{2} \times 3.97 \frac{kJ}{mol} - 200.4 \frac{kJ}{mol} = B_{lost}$$

$$B_{lost} = (1776.8 + 6.0 - 200.4) = 1582.4 \frac{kJ}{mol(Al_2O_3)}$$

The "fuel" value of aluminum would be 1582.4/(2X26.98) = 29.3 MJ/kg

See Appendix of Szargut for exegy values

Materials can do work?



Insert reversible heat engine between high and low temperatures

Chemical Properties referenced to the "environment"

Oceans

Crust

COMPOSITION OF AIR

Component of Air	Symbol	Content – %Volume
Nitrogen	N ₂	78.084 percent]
Oxygen	O2	20.947 percent
Argon	Ar	0.934 percent 99.998%
Carbon dioxide	CO ₂	0.033 percent
Neon	Ne	18.2 parts/million
Helium	He	5.2 parts/million
Krypton	Kr	1.1 parts/million
Sulfur dioxide	SO ₂	1.0 parts/million
Methane	CH ₄	2.0 parts/million
Hydrogen	H ₂	0.5 parts/million
Nitrous oxide	N ₂ O	0.5 parts/million
Xenon	Xe	0.09 parts/million
Ozone	O3	0.0 to 0.07 parts/million
Ozone – Winter	O3	0.0 to 0.02 parts/million
Nitrogen dioxide	NO ₂	0.02 parts/million
lodine	12	0.01 parts/million
Carbon monoxide	CO	0.0 to trace
Ammonia	NH ₃	0.0 to trace

The above table is an average for clean, dry air at sea level 1 part/million = 0.0001 percent.

Atmosphere

$T_0 = 298.2 \text{ K}, P_0 = 101.3 \text{ kPA}$

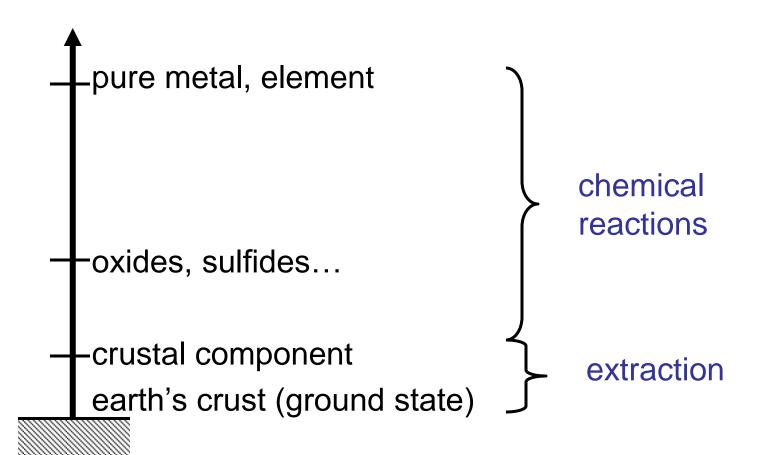
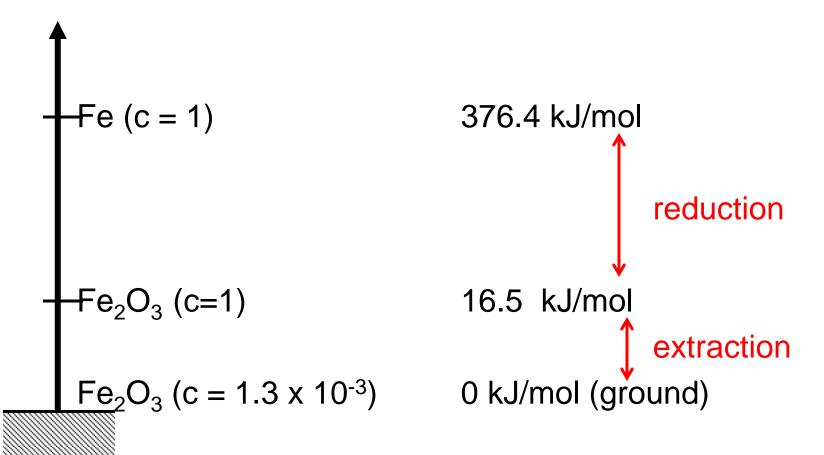

H_2		4	Atmosphere Hydrosphere Lithosphere														He
Li	Li Be										В	С	N_2	02	F_2	Ne	
Na	Na Mg										AI	Si	Ρ	S	Cl_2	Ar	
κ	Са	Sc	Ti	۷	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br_2	Kr
Rb	Sr	Υ	Zr	Nb	Мо	X	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	l ₂	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	X	imes	\mathbb{X}
\times	Ra																
	Ce Pr Nd Pr Sm Eu Gd Tb								Tb	Dy	Но	Er	Tm	Yb	Lu		
	Th Det U Det Pu Det Det									X	X	X	X	X	X		

Fig. 3. Reference species media for elements according to Szargut [3].

H_2		Atmosphere Hydrosphere Lithosphere														He	
Li	Be											В	С	N_2	02	F_2	Ne
Na	Mg										AI	Si	Ρ	S	Cl_2	Ar	
K	Са	Sc	Ti	۷	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br_2	Kr
Rb	Sr	Υ	Zr	Nb	Мо	X	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I2	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	X	X	\mathbb{M}
X	Ra																
	Ce Pr Nd 🕅 Sm Eu Gd Tb								Tb	Dy	Но	Er	Tm	Yb	Lu		
	Th Det U Det Pu Det Det Det									X	X	X	X	X	X		

Fig. 4. Reference species media for elements according to Valero et al. [10].


Exergy Reference System

Exergy Reference System
Aluminum (c=1) 888.4 kJ/mol

$$Al_2O_3$$
 (c=1) 200.4 kJ/mol
 Al_2SiO_5 (c=1) 15.4kJ/mol
 Al_2SiO_5 (c = 2 x 10⁻³) 0 kJ/mol (ground)

Example; making pure iron from the crust

	G		Ref	Reference species				
		ponent of ithosphere		Conventional standard	Standard chemical	chemical exergy of the		
Chemical element	Formula	Mass fraction	Formula	mole fraction x _{in}	exergy, kJ/mol	element, kJ/mol		
Al (s)	Al ₂ O ₃	0.152	Al ₂ SiO ₅ (sillimanite)	2×10^{-3}	15.4	888.4		
Ba	BaO	5.1×10^{-3}	-	-	-	-		
Ca	CaO	5.1×10^{-2}	-	-	-	-		
Cl	Cl	4.5×10^{-4}	-	-	-	-		
Co (s)	Со	4×10^{-5}	Co ₃ O ₄	2×10^{-7}	38.2	265.0		
Cr (s)	Cr ₂ O ₃	5.2×10^{-4}	$Cr_2O_3(s)$	4×10^{-7}	36.5	544.3		
Fe (s)	FeO Fe ₂ O ₃	3.72×10^{-2} 3.10×10^{-2}	$Fe_2O_3(s)$	1.3×10^{-3}	16.5	376.4		
K	K ₂ O	3.11×10^{-2}		-	-	-		
Mg (s)	MgO	3.45×10^{-2}	CaCO ₃ · MgCO ₃	2.3×10^{-3}	15.1	633.8		
Mn (s)	MnO	1.18×10^{-3}	MnO ₂	2×10^{-4}	21.1	482.3		
Na	Na ₂ O	3.71×10^{-2}	-	-		_		
P (s)	P_2O_5	2.85×10^{-3}	$Ca_3(PO_4)_2$	4×10^{-4}	19.4	875.8		
S	SO,	2.6×10^{-4}	-		-	-		
Sb (s), III	Sb	1×10^{-6}	Sb ₂ O ₅	7×10^{-10}	52.3	435.8		
Si (s)	SiO ₂	0.591	$SiO_2(s)$	0.472	1.9	854.6		
Sn (s), white	Sn	4×10^{-5}	$SnO_2(s)$	8×10^{-6}	29.1	544.8		
Ti (s), II	TiO ₂	1.03×10^{-2}	TiO ₂ (s), III	1.8×10^{-4}	21.4	906.9		
U (s), III	U	4×10^{-6}	$UO_3(s)$	2×10^{-8}	43.9	1190.7		
V (s)	V_2O_5	2.3×10^{-4}	$V_2O_5(s)$	2×10^{-6}	32.5	712.1		

Table 2.8 Solid reference species and their conventional average concentration in the external layer of the earth crust

Extraction from the crust

Extracting Fe_2O_3 from $c = 1.3 \times 10^{-3}$ (crust) to c = 1

$$B = T_o R \ln \frac{1}{1.3x 10^{-3}}$$

$$B = 298.2^{\circ} K \times 8.314 \frac{J}{mol \ K} \times \ln \frac{1}{1.3 \times 10^{-3}} = 16.5 \frac{kJ}{mol}$$

Note: $R = k N_{avo}$ (Boltzmann's constant X Avogadro's number)

Reduction of Fe_2O_3 with carbon

$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$

 $2 \times 16.5 + 3 \times 410.3 - 4 \times 376.4 - 3 \times 19.9 =$

$B_{lost} = -301.4 \text{ kJ}$

i.e. minimum energy required to reduce 2 mole of hematite using carbon Stoichiometrically balanced but not spontaneous

We need more carbon

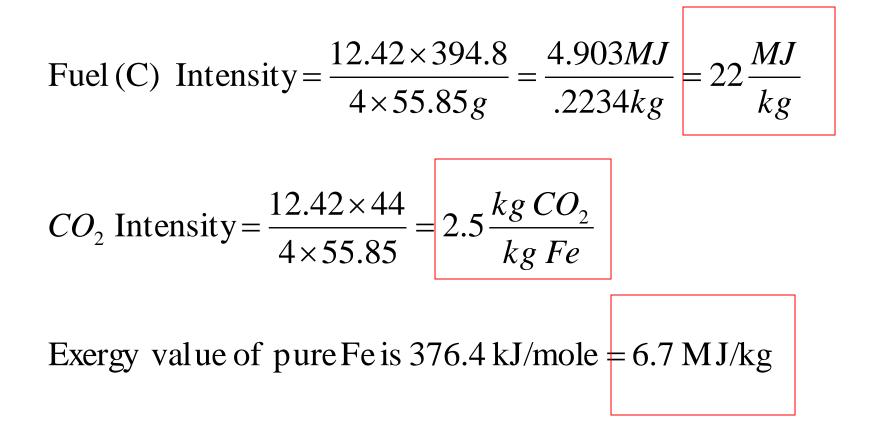
Recall C + $O_2 \rightarrow CO_2$ produces 394.8 kJ/mol C

We need
$$\frac{301.4}{394.8} = 0.76$$
 mols of carbon
2Fe₂O₃ + 3.76C + 0.76O₂ \rightarrow 4Fe + 3.76 CO₂

Ref Baumgärtner & de Swaan Arons JIE 2003

And more carbon...

but the efficiency of the use of carbon is only 30.3%


therefore the actual reaction is

$2Fe_2O_3 + 12.42C + 9.42O_2 \rightarrow 4Fe + 12.42CO_2$

33kJ + 5095.9 + 37.7 - 1505.6 - 247.2kJ = 3,413.8 kJ for 4 mol of Fe

this is 15.2 MJ/kg (Fe)

Iron Ore Reduction

Summary for Iron Ore

fuel used = 22 MJ/kg \approx 15.2(B_{lost}) + 6.7(B_{Fe}) \int "Credit" for producing pure iron from the crust Lost exergy from making iron

from Fe₂O₃

See Smil Table A.12, iron from ore 20 - 25 MJ/kg

Exergy Balance for open system $\stackrel{B_{in}}{\longrightarrow} \stackrel{\Omega}{\longrightarrow} \stackrel{B_{out}}{\longrightarrow} \stackrel{B_{out}}{\longrightarrow} \stackrel{B_{w,out}}{\longrightarrow} \stackrel{B_{w,out}}{\longrightarrow} \stackrel{B_{u,out}}{\longrightarrow} \stackrel{B_{u,out$

$$\dot{B}_{in} + \dot{B}_{W,in} + \dot{B}_{Q,in} = \dot{B}_{out} + \dot{B}_{W,out} + \dot{B}_{Q,out} + \dot{B}_{loss}$$

These terms include materials flows (with chemical and physical exergy), work and heat interactions and internal irreversibilities, where:

$$\dot{B}_{in/out} = \dot{B}^{ph}_{in/out} + \dot{B}^{ch}_{in/out}$$

$$\dot{B}_{W,in/out} = \dot{W}_{in/out}$$

$$\dot{B}_{Q,in/out} = (1 - T_o / T) \dot{Q}_{in/out}$$