Batteries: 1/(1.04)^4=85% of batteries share of supply could come from returned batteries, but only 80% of battery lead is recovered. Thus only 68% of batteries share is available for recovery. Batteries are 38% of lead consumption, so roughly 26% of lead production comes from recycled batteries.

Architectural: 1/(1.04)^70=6% of architectural share of supply could come from returned architectural elements, and 95% is recovered. Still, roughly 6% of the architectural share is available for recovery. Architectural elements are 16% of lead consumption, so roughly 1% of lead production comes from recycled architectural elements.

Paint: 0%

4.10

Assuming that nothing else changes (material intensity of products doesn't change, etc), the amount of material currently required to produce the products is m_0 . In five years, these products will reach end of life, and thus m_0 of material M will be available for recycling. At that point, the demand for the material will have increased to m_0 ($1+r_c$)⁵. If we wish for the import demand to not increase above the original level, which was m_0 in the current year, we need to recover $m_0(1+r_c)^5-m_0$ or $m_0((1+r_c)^5-1)$ of the material from recycled sources to meet the additional demand. Since the original quantity of material available is m_0 , we divide the additional demand, $m_0((1+r_c)^5-1)$ by m_0 to find that the required recycling rate to meet this new demand is $(1+r_c)^5-1$.