Quiz - Duration: 10 min.

1. Two thin lenses (focal lengths f_{1}, f_{2}) are separated by distance d. The left-hand-side lens is illuminated by a ray bundle originating at $-\infty$. What is the required separation so that the bundle emerging from the right-hand-side lens is collimated (i.e., comes to focus at $+\infty$)?

Answer: By definition, the input ray comes to focus f_{1} behind the first lens, and a point source at distance f_{2} in front of the second lens produces a collimated ray bundle at the output. Therefore, $d=f_{1}+f_{2}$ (note that these statements are true for thin lenses; for a thick lens, one should use effective focal lengths and be more careful with the distance definitions).
2. In the previous problem, what is the ratio of beam widths a_{1} / a_{2} ?

Answer: From similar triangles, $a_{1} / a_{2}=f_{1} / f_{2}$.
3. The object shown below is distance s behind a thin lens (focal length f) followed by a thin plate (thickness t, refractive index n). Find the distance s^{\prime} where the image is in focus (within the paraxial approximation).

Answer: The effective plate thickness is t / n. Therefore, the effective optical path between lens and object is $s^{\prime}-t+t / n$, and the lens law applies as follows:

$$
\frac{1}{s^{\prime}+t\left(\frac{1}{n}-1\right)}=\frac{1}{s}+\frac{1}{f} \Rightarrow s^{\prime}=\frac{s f}{s+f}+\left(1-\frac{1}{n}\right) t .
$$

