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Nucleon-nucleon interaction

e One-pion exchange (attractive) at large
distances, repulsion at short distance

e Phenomenological coordinate-space
potentials: Argonne-potential

H = Z—V2+2Vg+ Y Vi

i<j i<j<k

Vi(r) = Y, W(r)0

p=1,8

O’ =(,01 07,512, L-8) X (1,74

Wiringa et al. (1995), Gandolii et al. (2015)
e Three-nucleon force

> Required for saturation
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Quantum Monte Carlo

Large class of methods; unmatched for describing light nuclei

Diffusion Monte Carlo: project out ground state

ITU) = lim [BXP(HT)Tma]]

T—00

Gandolfi et al. (2015)

Restricted to approximately local potentials
Gezerlis et al. (2014) making local versions of chiral interactions for QMC

Fail to simultaneously describe light nuclei and nuclear

saturation
e.g. Akmal et al. (1998) get -12.61 MeV instead of -16 MeV for saturation
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Chiral effective theory
3N Force
¢ QCD (except for mass terms) has
a SU(3)XSU(3) chiral symmetry
e This symmetry is spontaneously
broken, and pions are nearly
massless Goldstone bosons

¢ At low momenta, nucleon-
nucleon interaction dominated by
pions
} * ’ e This works up to a scale,

’ A, ~ 500 — 700 MeV

¢ Use an effective interaction with
undetermined coupling constants:

l fixed from light nuclei

}l te-y, / » Neutron matter is "perturbative" at
SebeA N low densities
+... +.us Machleidt and Entem (2011): Epelbaum et al. (2009)




Relativistic stars
» Specify the metric

ds* = —e*®Vdr? + 22dr? + r2d6?* + r? sin® Odg?
e Now, m is "gravitational mass"

d
S 43:'?'23; m(ir=0)=0
dr

_ 3
dP Gm8(1+£) (1+4ﬂ'Pr )(I_ZGm); P(r=R) =0

dr r2 £ m r

e The baryonic mass is

-1/2

R
2G
Mng 4:rr2n3m3(1— rm) dr
0

e Gravitational potential:

2GM
r

-1
) inside : d_q; ——ld—P(1+ P)

outside : €?® = (1 - —
dr e dr



Neutron Star Masses and Radii and the EOS

e Neutron stars (to better than 10%) all lie on one universal mass-radius curve
(Largest correction is rotation)
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e Two ~ 2 Mg neutron stars
Demorest et al. (2010), Antoniadis et al. (2013}

e This is the most significant constraint on dense QCD outside of perturbation

theory

e If we have neutron star observations, we can "connect the dots"



Constraints on the EOS ’

e Hydrodynamic stability, dP/de > 0

e Causality ¢? = dP/de < 1



Speed of sound
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Bazavov et al. (2015)

e The speed of sound at zero
density and finite temperature:

¢z > 1/3asT - o0

e What happens at high density and
zero temperature?

e Perturbation theory suggests c?

increases to 1/3 from below
Kurkela et al. (2010)

e ¢ =~ 1/12 in neutron matter at
the saturation density

e Isc? > 1/3 anywhere in the
universe?
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Assume ¢? < 1/3 everywhere
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Bedaque and Steiner (2015)

e Assume the speed of sound as large is maximal, but < 1/3 (black curve)
e No! Not unless R is large. ¢Z must be non-trivial at high densities. Why?
e Implies a phase transition at high-density, or a some new length scale
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Models and Phenomenology

e Except for maybe lattice QCD and perturbation theory,
we're almost all doing (at least a little)
phenomenology/modeling

e The ultimate test of our models is our ability to match
and/or predict experiments and/or observations

e Often, better physics input (e.g. more grounding in
QCD) leads to better descriptions of the data and
better predictions

e But, simpler and/or analytical models can be
extremely helpful in creating understanding
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x? fitting =
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e Traditional y? fit works great when:

1. Uncertainties are independent Gaussian distributions

2. There are more data points than parameters

3. Uncertainties are dominant in one "direction"

4. Model is not extremely nonlinear and thus the likelihood is nearly Gaussian
e You can minimize ¥ or maximize the likelihood function £ = exp(—y?2/2)
» Look at covariance matrix to determine parameter uncertainties



Two-dimensional fitting problems
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Some of the data

Y

X
Fici. 1. —THustratton of Lhe dillerent methods for minmizing the distance of
the data from a fitted line: {a) OLS{Y | X), where the distance is measured
vertically; () OLS{X | ¥}, where the distance is taken horizontally; (¢] OR,
where the distance is measured vertically to the line; and (d) RMA, where the

distances are measured both perpendicularly and horizontally. No illustration
of the QLS bisector is drawn in this figure.

lsaobe et al. 1990

e Several frequentist approaches to two-dimensional fitting
problems, which go by several names:

o Reduced major axis regression
o Geometric mean regression

o Orthogonal least squares

o Deming regression



Bayesian Inference

e Bayes theorem:
PIM,;|D] x P[DIM;]P[M,;] = L X prior

e Prior distribution must be specified by the user: initial
probability distribution before looking at the data

e Prior distribution is scary for frequentists. It's irrelevant
when data is plentiful. When it's important, it helps us
quantify the limitations of the data

e Determine parameters through marginalization, i.e.
P(M?) = / S(M; — MOP[DIM;1P[M;] dM

e Integrals can be computationally demanding
e Reproduces traditional ¥ fit in the appropriate limits
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Fitting two-dimensional data

e Assume Gaussian uncertainties in both x and y, a set of N
points (x; + dx;, y; + 0y;)

e Integrate the model, y(x, {p;}), over the data; ambiguity in
definition of length (line element, s)

e [T [(5)' ()] oo{ 52" Yoo 257

e Line element
dx\* [dy\*
df = — - d
\/[(ds) +(ds)] ’

e Must specify prior distribution over s (nuisance variable) and model
parameters {p; }
e Limiting forms imply traditional y fit




A Worked Example

e There are analytical solutions to the TOV equations. Define § = GM/R. Given the EOS:

e=12+/p.P — 5P
» The solution to the TOV equations is
R =(1-B)[288p.G (1 —2p)/x]"?

e Denote the solution to this equation as Ry (p., M)
e Presume one bivariate normal data point:

D(R, M) = exp{—(R — 10km)*/ [2 - (1 km)?*]}
x exp{—(R — 1.4 M)/ [2 - (0.1 Mp)?] }

e Choose s = M, then integrate
PIMID] = D[Rso1(Ps;s M), M] X Pprior(Px, M)

e For example:

P(P*:l — /dM D[Rﬁul(pmm:- M] X Ppriur(p*im
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Quark Matter at Finite Density

e The MIT Bag model

P(T=0)=-B+ Z Pf,nan—intﬂracting(T = 0)

iI=u.d,s
e Bag parameter B models confinement

e Can add density-independent superconducting gaps as well
e.g. Alford et al. (2005)

e Basic picture: Transition to quarks at high density when their

pressure becomes larger than that of nucleons
Collins and Perry (1975)

e It is not known if this transition to deconfined quark matter is
attained in neutron stars
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Nambu Jona-Lasinio model L
L =g, (f'f‘ 8i6ap — MibjjBap — Mijap?" ) djp
+ GZ [ q/’u” q:yszlﬂ ) ]
a=(0

Klevansky (1992): Hatsuda and Kunihiro (1994): Buballa (2005): notation from Steiner et al. (2002)

e i andj are flavor indices, a@ and f are color indices, a is an index over
the SU(3) matrices

e Exhibits a chiral phase transition

¢ Can be formulated in a way that has the same symmetries as QCD
¢ Often used in the mean-field approximation

41929394 — (@'1‘?2}@3'?4 + q192 @39‘4} — @1?2) (@'39‘4}

* Maximize pressure w.rt. (gq), and p;; o5
e Non-renormalizable, UV cutoffatp = A



Dynamically Generated Mass

e (gq) plays the role of a new
thermodynamic parameter

¢ Maximize the pressure
e Minimization with respect to (gq)
leads to a "dynamically generated

mass"

e This is the so-called "mass-gap"
equation

m: = m; — 4G (G;q;)

(qq) =

A
= / dk k> i
\/m"“2 + k?
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Buballa and QOertel (1999)
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Color superconductivity
e Model for color superconductivity

L =Gy E Z (Q;EEQkEaﬁyqj%) (@fgﬂw Ei’j’kea’ﬂ’rqj’ﬁ’)
k7

+Ga E E (@fgfhﬂgﬁaﬁy%%) (f?ﬁf fYﬁEf’j’kea’ﬁ’r‘fj’ﬁ’)
kv

Notation from Steiner et al. (2002)

¢ Leads to a phase transition, analagous to chiral phase transition

A = 2G, (@,-aiﬁg’jksﬂﬁ ”qﬁ)

e Similar mean field approximation, but with anomalous propagators
e Nambu-Gorkov formalism

e Leads to new "dispersion relation", E(k) # Vk? + m*?
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Dispersion relation from a Dirac-like Lagrangian *

e Thermal field theory: partition function is just related to the determinant of
the inverse propagator log Z = log det D

e Determinant operation carried out over Dirac indices and momentum-
frequency space

» Matrix representing inverse propagator (f = 1/T)
_ . . = = 0
D = —if [(—iwn +p) —y°7 - p —my”|

logZ =2 Z Z ltzrfg{ﬁ2 [(r:.ﬂrﬂrI +iu)’ +p° + mz]}

P

e | eads to (see details here)

d’k

o) {log[1 + e 7@™M] + log[1 + e #@*¥]}
7

PV =logZ =2V/



Problem 4 =

e Superconductivity in the Nambu-Gorkov formalism leads to an
inverse propagator of the form

D= —ip —iwp — 77 - p —my° + p iAyysC
- : : 5T =
iAy°Cys —iw, — 77" P+ my’ —p

e where C = iy"y? is the charge conjugate matrix in the Dirac
representation

e Compute the determinant and, in analogy to the normal case,
determine the new dispersion relation in the case where m = ()



