Quantum sensing and dark matter searches

Alex Sushkov

Main points

Introduction: quantum sensing, dark matter

 Lecture 1: quantum approaches to searching for the electromagnetic interaction of axion-like dark matter

 Lecture 2: quantum approaches to searching for the interaction of axion-like dark matter with nuclear spins

The standard model

'he Standard Model

The tools

particle accelerators

rare event detectors (eg, WIMPs)

terrestrial telescopes

gravitational wave observatories

space telescopes

precision lab-scale experiments

Precision measurements, quantum metrology and sensing

NV centers in diamond

Diamond nanobeam NV fluorescence |-1)

[PRX 10, 031003 (2020)]

precisions measurements with molecules

[Science **343**, 269 (2013)] [Nature **562**, 355 (2018)]

interferometry

[Phys. Rev. Lett. **123**, 231107 (2019)] [Phys. Rev. Lett. **124**, 171102 (2020)]

quantum sensing review: [Rev. Mod. Phys. 89, 035002 (2017)]

entanglement-enhanced atomic sensors

[Nature **588**, 414 (2020)] [arXiv:2106.03754 (2021)]

LIGO: an inspiration for quantum metrology

first gravitational wave detection (GW150914, 2015)

GW events detected in O1 and O2

added a squeezed vacuum source for O3 run (2019-2020)

[Phys. Rev. Lett. 123, 231107 (2019)] [Phys. Rev. Lett. 124, 171102 (2020)] [Liv. Rev. Rel. 23, 1 (2020)]

extended detection range by $\approx 15\%$ \Box

increased detection rate by $\approx 45\%$

The dark matter problem

What is dark matter?

[Nature **562**, 51 (2018)]

particle-like dark matter (eg: WIMPs): mass ~ 100 GeV [*Phys. Rev. D* **96**, 035009 (2017)]

wave-like dark matter (eg: axions) mass << eV

[Phys. Rev. Lett. 118, 061302 (2017)]

Searching for WIMP-like dark matter

indirect detection

accelerator searches

a number of extremely sensitive experimental searches

direct detection

to go beyond the neutrino floor we can use directional information

Idea: direction-sensitive WIMP detector based on quantum defects in diamond

1. detector volume is made up of diamond sections, surrounded by PMTs and/or charge readout sensors

2. a WIMP scattering event is detected and localized via charge collection and scintillation

3. the recoil nucleus produces a track of vacancies \approx 100 nm long

4. the detector section where the scattering event occurred is pulled out and examined

5. measurements of crystal strain using NV centers allow reconstruction of vacancy distribution, and hence the WIMP momentum direction

a directional detector for WIMP dark matter

details: S. Rajendran *et al.* arXiv:1705.09760; *Phys. Rev. D* (2017) M. Marshall *et al.* arXiv: 2009.01028; *Quantum Sci. Technol.* (2021) M. Marshall *et al.* arXiv:2103.08388; *Phys. Rev. Appl.* (Subm.) M. Marshall *et al.* arXiv:2107.xxxxx (in preparation)

What is dark matter?

[Nature **562**, 51 (2018)]

particle-like dark matter (eg: WIMPs): mass ~ 100 GeV [*Phys. Rev. D* **96**, 035009 (2017)]

wave-like dark matter (eg: axions) mass << eV

[Phys. Rev. Lett. 118, 061302 (2017)]

The strong-CP problem

p

nTRA CLEANING

axion solves the strong-CP problem

[Phys. Rev. Lett. 38, 1440 (1977)] [Phys. Rev. Lett. 40, 223 (1978)] [Phys. Rev. D 16, 1791 (1977)] [Phys. Rev. Lett. 40, 279 (1978)]

Axions and axion-like particles, axion-like dark matter

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$

15

Axions and axion-like particles: basics and motivation

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$
- 5. Only 3 possible (non-gravitational) interactions with standard model particles:

 \rightarrow ALP \leftrightarrow photon conversion in a magnetic field \rightarrow precision electromagnetic sensors

ADMX, HAYSTAC, DMradio, SHAFT, ABRA, ALPS, CAST, IAXO, CAPP, ORGAN, BREAD, SLIC, LC circuit, MADMAX, KLASH, BRASS, many others → nuclear spin I interacts with an oscillating electric dipole moment (EDM) $d_n = g_d a$ in presence of effective electric field E^* .

CASPEr-electric

interaction with leptons:

$$\frac{\partial_{\mu}a}{f_a} \bar{\psi}_{\ell} \gamma^{\mu} \gamma_5 \psi_{\ell}$$
 a-----
 $\mathcal{H}_{aNN} = g_{aNN} \nabla a \cdot \mathbf{I}$

→ nuclear spin I interacts with an effective magnetic field ∇a . co-magnetometers force mediator → ARIADNE electron spin → QUAX

CASPEr-gradient

16

Axions and axion-like particles: basics and motivation

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$
- 5. Only 3 possible (non-gravitational) interactions with standard model particles

Axions and axion-like particles: basics and motivation

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$
- 5. Only 3 possible (non-gravitational) interactions with standard model particles
- 6. Detection of axion dark matter \rightarrow insight into energy scale of **<u>inflation</u>**

Axions and axion-like particles: basics and motivation

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics[Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$
- 5. Only 3 possible (non-gravitational) interactions with standard model particles
- 6. Detection of axion dark matter \rightarrow insight into energy scale of **<u>inflation</u>**

laboratory-scale experimental searches can explore the axion parameter space

[Science 357, 990 (2017)]

19

Axions and axion-like particles: basics and motivation

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$
- 5. Only 3 possible (non-gravitational) interactions with standard model particles:

→ ALP ↔ photon conversion in a magnetic field
 → precision electromagnetic sensors

ADMX, HAYSTAC, DMradio, SHAFT, ABRA, ALPS, CAST, IAXO, CAPP, ORGAN, BREAD, SLIC, LC circuit, MADMAX, KLASH, BRASS, many others interaction with gluons (strong-CP) defines QCD axion: $a \sim C$

→ nuclear spin I interacts with an oscillating electric dipole moment (EDM) $d_n = g_d a$ in presence of effective electric field E^* .

CASPEr-electric

interaction with leptons:

$$\frac{\partial_{\mu}a}{f_a} \bar{\psi}_{\ell} \gamma^{\mu} \gamma_5 \psi_{\ell}$$
 a-----
 $\mathcal{H}_{aNN} = g_{aNN} \nabla a \cdot \mathbf{I}$

→ nuclear spin I interacts with an effective magnetic field ∇a . co-magnetometers force mediator → ARIADNE electron spin → QUAX

CASPEr-gradient

Searches for electromagnetic interaction of axion-like dark matter

 $a(t) = a_0 \cos \omega_a t$

20

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size << wavelength

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size << wavelength

 $\ensuremath{\textbf{approach}}\xspace \to \ensuremath{\textbf{additional term}}$ in Ampere's law

$$ig>
abla imes oldsymbol{H} imes oldsymbol{H} = oldsymbol{J}_f$$

Ц

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv: 1811.03231* (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)]

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size << wavelength

approach \rightarrow additional term in Ampere's law

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv:* 1811.03231 (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)] azimuthal static magnetic field B_0

æ

axion field $a(t) = a_0 \cos \omega_a t$

azimuthal effective current

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size << wavelength

 $\ensuremath{\textbf{approach}}\xspace \to \ensuremath{\textbf{additional term}}$ in Ampere's law

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv: 1811.03231* (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)] [*Nature Physics* **17**, 79 (2021)] azimuthal static magnetic field B_0

ቍ

axion field $a(t) = a_0 \cos \omega_a t$

azimuthal effective current

axial oscillating magnetic field B_a

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size << wavelength

approach \rightarrow additional term in Ampere's law

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv: 1811.03231* (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)] [*Nature Physics* **17**, 79 (2021)] azimuthal static magnetic field B_0

ቍ

axion field $a(t) = a_0 \cos \omega_a t$

1

azimuthal effective current

axial oscillating magnetic field B_a

signal detected by SQUID $\propto B_0$

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size << wavelength

key experimental parameters:

- magnetic field $B \rightarrow$ larger is better
- volume V \rightarrow larger is better
- temperature \rightarrow colder is better
- sensor noise and back-action

 $\ensuremath{\textbf{approach}}\xspace \to \ensuremath{\textbf{additional term}}$ in Ampere's law

[Phys. Rev. Lett. 112, 131301 (2014)]
[Phys. Rev. D 92, 075012 (2015)]
[Phys. Rev. Lett. 117, 141801 (2016)]
[arXiv: 1811.03231 (2018)]
[Phys. Rev. Lett. 122, 121802 (2019)]
[Nature Physics 17, 79 (2021)]

azimuthal static magnetic field B_0

ቍ

axion field $a(t) = a_0 \cos \omega_a t$

azimuthal effective current

axial oscillating magnetic field B_a

signal detected by SQUID $\propto B_0$

Experimental setup, broadband searches: SHAFT, ABRACADABRA

 $\Phi_a \rightarrow$ magnetic flux due to axion-like dark matter

 $L_{\rm c}$

 Φ_a

 L_p

[A.Gramolin et al., *Nature Physics* **17**, 79 (2021)] [C. Salemi et al., Phys. Rev. Lett. **127**, 081801 (2021)]

Experimental setup, broadband searches: SHAFT, ABRA

 $\Phi_a \rightarrow$ magnetic flux due to axion-like dark matter

[A.Gramolin et al., *Nature Physics* **17**, 79 (2021)] [C. Salemi et al., Phys. Rev. Lett. **127**, 081801 (2021)]

Experimental setup, resonant searches: DM radio

 B_{a} search for unknown axion mass (Compton frequency) is performed by scanning the resonance frequency this is what makes these searches hard ω_c standard quantum limit B_0 (SQL) $V_n \rightarrow$ thermal + quantum noise $V_h \rightarrow$ back-action noise $V_i \rightarrow$ amplifier "imprecision" voltage noise $N(\omega) = \frac{1}{e^{\hbar\omega/k_BT} - 1} + \frac{1}{2}$ $I_i \rightarrow$ amplifier "imprecision" current noise R Min the lumped element regime $\ \hbar\omega \lesssim k_B T$ Φ_a $\Theta \uparrow \tilde{I}_i$ $L_{\rm c}$ DAQ Asensitivity is limited by thermal noise V_b V_M (\sim) V_n **resonant pickup circuit** \rightarrow sensitivity is limited by thermal noise; [Phys. Rev. D 92, 075012 (2015)] amplifier imprecision and back-action limits sensitivity bandwidth [arXiv:1803.01627 (2018)]

 $a(t) = a_0 \cos \omega_a t$

Experimental setup, resonant searches: DM radio

Quantizing the resonant LC circuit \rightarrow back action evasion V_A^{Y} V_B^{Y} $V_B^$

Cavity haloscope searches for axion-like dark matter

 $a(t) = a_0 \cos \omega_a t$

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size ≈ wavelength

Cavity haloscope searches for axion-like dark matter

goal: search for electromagnetic coupling of axion-like dark matter in in mass (frequency) range where experiment size ≈ wavelength

→ ALP ↔ photon conversion in a magnetic field
 → precision electromagnetic sensors

axion signal power:
$$P_{a \to \gamma} = \frac{g_{a \gamma \gamma}^2 \rho_a}{m_a} \eta C B_0^2 V Q_c$$

 $\eta = \frac{\beta}{1+\beta} \qquad \beta = \frac{\text{power output}}{\text{power dissipated}}$
 $Q_c = \frac{Q}{1+\beta} \qquad \uparrow$
cavity coupling factor

[*Phys. Rev. D* **88**, 035020 (2013)] [*Rev. Mod. Phys.* **93**, 015004 (2021)]

Noise in cavity haloscopes

Haloscope At Yale Sensitive To Axion CDM: HAYSTAC

circ

Counting single photons to search for axion-like dark matter $a(t) = a_0 d$

at Compton frequencies \geq 10 GHz, single photon counting (bolometric detection) becomes the favourable detection approach

$$a(t) = a_0 \cos \omega_a t$$

Summary: searches for axion-photon interaction

39

Tomorrow: searches for interactions of axions with nuclear spins

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics[Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10¹⁶ GeV) or Planck (10¹⁹ GeV) scales
- 4. Well-motivated and thoroughly-studied <u>dark matter</u> candidate: $a(t) = a_0 \cos \omega_a t$
- 5. Only 3 possible (non-gravitational) interactions with standard model particles:

 \rightarrow ALP \leftrightarrow photon conversion in a magnetic field \rightarrow precision electromagnetic sensors

ADMX, HAYSTAC, DMradio, SHAFT, ABRA, ALPS, CAST, IAXO, CAPP, ORGAN, BREAD, SLIC, LC circuit, MADMAX, KLASH, BRASS, many others → nuclear spin I interacts with an oscillating electric dipole moment (EDM) $d_n = g_d a$ in presence of effective electric field E^* .

CASPEr-electric

interaction with leptons:

$$\frac{\partial_{\mu}a}{f_a} \bar{\psi}_{\ell} \gamma^{\mu} \gamma_5 \psi_{\ell}$$
 a-----
 $\mathcal{H}_{aNN} = g_{aNN} \boldsymbol{\nabla} a \cdot \boldsymbol{I}$

→ nuclear spin I interacts with an effective magnetic field ∇a . co-magnetometers force mediator → ARIADNE electron spin → QUAX

CASPEr-gradient