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NNPSS 2022: Nuclear Astrophysics Lecture 1,  Zach Meisel (Ohio University)

Lecture 1: Astrophysical Reaction Rates
•Evidence for nuclear reactions in space
•Thermonuclear reaction rates
•Non-resonant rates
•Resonant rates
•Pycnonuclear rates
•Reaction networks



Birth of Nuclear Astrophysics
•Nuclear astrophysics was spawned in 1920 by a realization of Arthur Eddington (The Observatory (1920):
•Based on fossil evidence at the time, the Earth was known to be more than several hundred 
million years old and the sun presumably had to be at least as old

•A plausible explanation for the sun’s power might be gravitational energy being converted into 
heat from the gaseous solar sphere collapsing, taking place on the Kelvin-Helmholtz timescale

• 𝜏𝜏𝐾𝐾𝐾𝐾 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

= (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)/2
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

= 𝐺𝐺𝑀𝑀2

2𝑅𝑅𝑅𝑅
≈ 16𝑀𝑀𝑀𝑀𝑀𝑀 for the sun

•Instead, maybe it’s just a lump of burning coal!
• Typical chemical bond energies are ~eV
• The sun has a mass of ~1030kg and a nucleus is ~10-27kg, it has ~1057 nuclei (or atoms)
• Since the sun releases ~1039MeV/s, chemical burning would last roughly
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
~ 1057𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∗1𝑒𝑒𝑒𝑒/𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
1039𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠∗106𝑒𝑒𝑒𝑒/𝑀𝑀𝑀𝑀𝑀𝑀

~1012𝑠𝑠~30𝑘𝑘𝑘𝑘𝑘𝑘
• Third time’s the charm…let’s look at nuclear energy

• Aston measured a 32MeV discrepancy between 4 protons and 1 Helium nucleus (4p->α actually yields ~27MeV)
• Multiplying our fuel amount by 106 (eV->MeV) results in ~10𝐺𝐺𝐺𝐺𝐺𝐺 burn time …which finally does the job
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from the virial theorem



Evidence for recent nuclear reactions in space (selected examples)
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Solar ν attributable to 
hydrogen burning sequences

Bahcall, Serenelli, & Basu, ApJL (2005)

γ-rays of short-lived isotopes 
(e.g. 44Ti) in supernova remnants

B. Grefenstette et al. Nature (2014)

Anomalous isotopic ratios in 
meteoritic “pre-solar” dust grains

N.Liu et al ApJL (2017)

Neutron star merger afterglow 
associated with radioactive decay

Berger, Fong, & Chornock ApJL (2013)

Radioactive elements (e.g. Tc) 
in stellar spectra

B. Peery PASP (1971)

Match in energetics
(e.g. C-fusion in X-ray superbursts)

E.F. Brown ApJL (2004)



Reaction rate
•The way nuclei influence and are influenced by astrophysical environments is through energy 
generation and element transmutation (“nucleosynthesis”). 
The importance of a pair of nuclides is going to be related to the rate at which they react.

•We can figure out what that reaction rate is by considering a simple example of a gas with two 
species, each with their own number density, inside a volume at some temperature

•For simplicity, we’ll consider one species as the projectile and the other as the target
(though it doesn’t matter since all of our calculations will be in the center of mass)

•The reaction rate between species 1 and 2 will be:
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 1 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 2 ∗ (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓 1 + 2)

•1’s flux is the number of 1 atoms per area per time:  𝐹𝐹1 = 𝑛𝑛1𝑣𝑣
where 𝑛𝑛1 is the 1 number density and 𝑣𝑣 is the relative velocity

•The interaction “probability*” is provided by the cross section 𝜎𝜎12(𝑣𝑣)
•So, 𝑟𝑟 𝑣𝑣 = 𝐹𝐹1𝑛𝑛2𝜎𝜎12 𝑣𝑣 = 𝑛𝑛1𝑛𝑛2𝜎𝜎12 𝑣𝑣 𝑣𝑣, is the reaction rate for velocity 𝑣𝑣

5

*not technically a 
probability



Thermonuclear reaction rate
• Of course, nature isn’t so neat and orderly. Any environment will have a finite temperature and 

therefore any nuclei will have a velocity distribution 𝑃𝑃(𝑣𝑣) that’s defined by the temperature.
• To get an average rate given some relative velocity distribution, we need to do an average

𝑟𝑟 = �
0

∞
𝑃𝑃(𝑣𝑣)𝑛𝑛1𝑛𝑛2𝜎𝜎12 𝑣𝑣 𝑣𝑣 𝑑𝑑𝑑𝑑 = 𝑛𝑛1𝑛𝑛2 �

0

∞
𝑃𝑃(𝑣𝑣)𝜎𝜎12 𝑣𝑣 𝑣𝑣 𝑑𝑑𝑑𝑑 = 𝑛𝑛1𝑛𝑛2 𝜎𝜎𝑣𝑣 12

(If the reaction is endothermic then the integral lower-limit is the reaction threshold)

• To avoid double-counting of particles, we have to make a slight modification for identical nuclei:
𝑟𝑟 = 𝑛𝑛1𝑛𝑛2 𝜎𝜎𝜎𝜎 12

1+𝛿𝛿12
, where 𝛿𝛿12 is the Kronecker delta

• Determining the reaction rate between a pair of particles 𝜎𝜎𝑣𝑣 is the nuclear physicist’s task
• The number densities are determined be calculating the effects of all reaction rates as a 

function of time in a reaction network to see how many nuclei are created/destroyed
• It’s more common to deal with matter densities and get the number density by taking into 

account the fraction of mass species 𝑖𝑖 contributes: 𝑛𝑛𝑖𝑖 = 𝜌𝜌𝑁𝑁𝐴𝐴
𝑋𝑋𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖
= 𝜌𝜌𝑁𝑁𝐴𝐴𝑌𝑌𝑖𝑖

where 𝑁𝑁𝐴𝐴 is Avogadro’s number, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 is the molar mass (a.k.a. mass in amu),
and 𝑋𝑋𝑖𝑖 (≤ 1) and 𝑌𝑌𝑖𝑖 are the mass and mole fractions, respectively 6

Similarly, the 
reduced reaction rate 
NA<σv> is often used



Thermonuclear rates and the Maxwell-Boltzmann distribution
• Typically, the environment we’re considering is a classical gas in thermodynamic equilibrium,

so the velocity distribution is described by the Maxwell-Boltzmann distribution

𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣 = 4𝜋𝜋𝑣𝑣2 𝑚𝑚
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

3/2
exp − 𝑚𝑚𝑣𝑣2

2𝑘𝑘𝐵𝐵𝑇𝑇
, where 𝑘𝑘𝐵𝐵 is the Boltzmann constant and the pre-

factor is for normalization (i.e. ∫0
∞𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣 𝑑𝑑𝑣𝑣 = 1)

• Both species interacting in an environment will have this distribution, so taking velocities for
1 and 2 in the lab-frame, 𝜎𝜎𝑣𝑣 12 = ∫0

∞∫0
∞𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣1 𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣2 𝜎𝜎12 𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣1𝑑𝑑𝑣𝑣2

• This is less-than desirable, since we would rather be working in terms of relative velocity only,
so we consider the fact that 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑐𝑐𝑐𝑐 ± 𝑣𝑣

• This means the double integral can be re-stated in terms of integrating over 𝑣𝑣 and 𝑣𝑣𝑐𝑐𝑐𝑐:
𝜎𝜎𝜎𝜎 12 = ∫0

∞∫0
∞𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣𝑐𝑐𝑐𝑐 𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣 𝜎𝜎12 𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑑𝑑𝑣𝑣

• Since the cross section only depends on the relative velocity and ∫0
∞𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣𝑐𝑐𝑐𝑐 𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐 = 1,

𝜎𝜎𝜎𝜎 12 = �
0

∞
𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣 𝜎𝜎12 𝑣𝑣 𝑣𝑣 𝑑𝑑𝑑𝑑

where we should keep in mind 𝑚𝑚 in 𝑃𝑃𝑀𝑀𝑀𝑀 refers to the reduced mass 𝜇𝜇
7



Thermonuclear rates and the Maxwell-Boltzmann distribution
• Inserting 𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣 into  𝜎𝜎𝜎𝜎 12 = ∫0

∞𝑃𝑃𝑀𝑀𝑀𝑀 𝑣𝑣 𝜎𝜎12 𝑣𝑣 𝑣𝑣 𝑑𝑑𝑑𝑑 yields

𝜎𝜎𝜎𝜎 12 = 4𝜋𝜋 𝜇𝜇
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

3/2
∫0
∞𝜎𝜎12 𝑣𝑣 𝑣𝑣 𝑣𝑣2exp − 𝜇𝜇𝑣𝑣2

2𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑑𝑑

• Noting the center of mass energy 𝐸𝐸 = 1
2
𝜇𝜇𝑣𝑣2 and so 𝑑𝑑𝑑𝑑 = 𝜇𝜇𝜇𝜇 𝑑𝑑𝑑𝑑 (i.e. 𝑣𝑣2 → 2

𝜇𝜇
𝐸𝐸, 𝑑𝑑𝑑𝑑 → 1

𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑),

we finally arrive at a useful equation for the astrophysical reaction rate

𝜎𝜎𝜎𝜎 12 =
8
𝜋𝜋𝜋𝜋

1
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 �

0

∞
𝜎𝜎12 𝐸𝐸 𝐸𝐸exp −

𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑𝑑𝑑

• Note that this is the general formula for classical gases.
We’ll go over special cases (for classical gases) in a bit.

• As an aside, personally I find 𝑘𝑘𝐵𝐵 hard to remember,
but I find it easier to remember that 11.6045 ∗ 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇9,
where 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 is energy in MeV and 𝑇𝑇9 is temperature in GK

8



Reverse (a.k.a. inverse) rates
• Even when a particular reaction direction is exothermic (𝑄𝑄 > 0), for a finite temperature,

some fraction of particles will have energies with 𝐸𝐸 ≥ 𝑄𝑄, and that fraction will grow with 𝑇𝑇
• Note that the cross section for an entrance channel through a compound nuclear state is the 

product of the effective geometric area of the projectile ( λ12
2𝜋𝜋

2
), the number of sub-states that 

can be populated (2𝐽𝐽 + 1), the probability of being in a particular sub-state for each of the 
reactants ( 1

(2𝐽𝐽1+1)
1

(2𝐽𝐽2+1)
), a factor of 2 for identical particles (1 + 𝛿𝛿12), and the matrix elements 

for forming the compound nucleus 𝐶𝐶 through 1 + 2 and decaying via 3 + 4:

𝜎𝜎12→34 = 𝜋𝜋
λ12
2𝜋𝜋

2 2𝐽𝐽 + 1
2𝐽𝐽1 + 1 2𝐽𝐽2 + 1

(1 + 𝛿𝛿12) 3 + 4 𝐻𝐻2 𝐶𝐶 𝐶𝐶 𝐻𝐻1 1 + 2 2

• The reverse process would then be

𝜎𝜎34→12 = 𝜋𝜋
λ34
2𝜋𝜋

2 2𝐽𝐽 + 1
2𝐽𝐽3 + 1 2𝐽𝐽4 + 1

(1 + 𝛿𝛿34) 1 + 2 𝐻𝐻1 𝐶𝐶 𝐶𝐶 𝐻𝐻2 3 + 4 2

• I.e. they’re identical except for the statistical and geometric factors out front

9



Reverse (a.k.a. inverse) rates
• Making the substitution that 

λ𝑖𝑖𝑖𝑖
2𝜋𝜋

2
= ℏ2

𝑝𝑝2
= ℏ2

2𝜇𝜇𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖
and noting 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗

𝑚𝑚𝑖𝑖+𝑚𝑚𝑗𝑗
,

taking the ratio of the forward and reverse cross sections yields
𝜎𝜎12
𝜎𝜎34

=
𝐴𝐴3𝐴𝐴4
𝐴𝐴1𝐴𝐴2

𝐸𝐸34
𝐸𝐸12

2𝐽𝐽3 + 1 2𝐽𝐽4 + 1
2𝐽𝐽1 + 1 2𝐽𝐽2 + 1

(1 + 𝛿𝛿12)
(1 + 𝛿𝛿34)

where 𝐴𝐴𝑖𝑖 can be used instead of 𝑚𝑚𝑖𝑖 since the units cancel

• For the rates, recall 𝜎𝜎𝜎𝜎 12 = 8
𝜋𝜋𝜇𝜇12

1
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 ∫0

∞𝜎𝜎12 𝐸𝐸12 𝐸𝐸12exp − 𝐸𝐸12
𝑘𝑘𝐵𝐵𝑇𝑇

,

so 𝜎𝜎𝜎𝜎 34 = 8
𝜋𝜋𝜇𝜇34

1
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 ∫0

∞𝜎𝜎34 𝐸𝐸34 𝐸𝐸34exp − 𝐸𝐸34
𝑘𝑘𝐵𝐵𝑇𝑇

• Since 𝐸𝐸34 = 𝐸𝐸12 + 𝑄𝑄12 (if 𝑄𝑄12 > 0), when we take the ratio 𝜎𝜎𝜎𝜎 34/ 𝜎𝜎𝜎𝜎 12 , the integrands 
mostly cancel except for the energy-independent part:

𝜎𝜎𝜎𝜎 34

𝜎𝜎𝜎𝜎 12
=

2𝐽𝐽1 + 1 2𝐽𝐽2 + 1
2𝐽𝐽3 + 1 2𝐽𝐽4 + 1

(1 + 𝛿𝛿34)
(1 + 𝛿𝛿12)

𝜇𝜇12
𝜇𝜇34

3/2

exp −
𝑄𝑄12
𝑘𝑘𝐵𝐵𝑇𝑇

• The exponential dominates, so 𝜎𝜎𝜎𝜎 34
𝜎𝜎𝜎𝜎 12

≈ exp − 𝑄𝑄12
𝑘𝑘𝐵𝐵𝑇𝑇

gives the correct order of magnitude
10

this is “reciprocity”

this is
“detailed balance”



Reverse (a.k.a. inverse) rates: photodisintegration
• For photodisintegration, we have to take into account the fact that the photons follow a

Planck distribution and not a Maxwell-Boltzmann distribution

• So the reverse rate becomes:  
𝜎𝜎𝜎𝜎 3γ

𝜎𝜎𝜎𝜎 12
≈ 𝜇𝜇12𝑐𝑐2

𝑘𝑘𝐵𝐵𝑇𝑇

3/2
exp − 𝑄𝑄12

𝑘𝑘𝐵𝐵𝑇𝑇

• This extra factor is actually a huge deal because of that extra temperature dependence
• In fact, for low 𝑄𝑄-value reactions,

the photodisintegration rate is dominant

11



Aside: S-factors, the nuclear physics nuggets of 𝜎𝜎𝑣𝑣

• Often it’s useful to remove the trivial 
energy dependence from the cross 
section, in particular for charged-
particle reaction rates

• The idea is that 𝑆𝑆(𝐸𝐸) contains all of the 
interesting physics

• Since the energy dependence is 
different for different types of reactions,
e.g. direct capture of a neutron as 
compared to direct capture of a charged 
particle, the factorization that is done to 
get 𝑆𝑆(𝐸𝐸) depends on the reaction type

12

Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Another Aside: Energy release in a reaction
• How much energy does a nuclear reaction rate release into the environment?
• This is as simple as it sounds, where the rate of energy release is just the product of the energy 

release per reaction times the reaction rate: 𝜖𝜖12 = 𝑄𝑄12𝑟𝑟12
• Given our pre-agreed upon units, 𝜖𝜖 = MeV

cm3s
,

…though some people prefer energy released per gram: ̃𝜖𝜖12 = 𝑄𝑄12𝑟𝑟12
𝜌𝜌

(units MeV/(g.s))

• To be on the safe side, 
one needs to keep in mind the reverse rate,
since we saw it can be significant
at high temperatures: 
𝜖𝜖12,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜖𝜖12 + 𝜖𝜖34 = 𝑄𝑄12(𝑟𝑟12−𝑟𝑟34)

13

Wiescher & Schatz, Prog.Theory.Phys.Suppl. (2000)



Thermonuclear rate: Direct neutron-capture
• Note that at low energies, those of interest for nuclear astrophysics, the neutron-capture cross 

section is described by the 1/𝑣𝑣 law: 𝜎𝜎𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 ∝
1
𝑣𝑣𝑛𝑛

• As such, it’s clear that 𝜎𝜎𝑣𝑣 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
• The cross section (and rate) can be characterized by the S-factor at thermal energies and any 

deviation from 1/𝑣𝑣 behavior is accounted for by the local derivative(s) of the S-factor:

𝜎𝜎 𝐸𝐸 =
𝜇𝜇
2𝐸𝐸

𝑆𝑆 0 + 𝑆̇𝑆 0 𝐸𝐸½ + 1
2𝑆̈𝑆 0 𝐸𝐸 + ⋯

• 𝑆𝑆(0) is generally the S-factor at thermal energy (𝑣𝑣𝑡𝑡𝑡 = 2.2 × 105 𝑐𝑐𝑐𝑐
𝑠𝑠

= 𝐸𝐸𝐿𝐿 = 2.53 × 10−8𝑀𝑀𝑀𝑀𝑀𝑀):
𝑆𝑆 0 = 𝜎𝜎𝑡𝑡𝑡𝑣𝑣𝑡𝑡𝑡 = 2.2 × 10−19𝜎𝜎𝑡𝑡𝑡𝑐𝑐𝑐𝑐

3

𝑠𝑠 , where 𝜎𝜎𝑡𝑡𝑡 is the thermal cross section in barns

• 𝑆̇𝑆 0 and 𝑆̈𝑆 0 are fit to cross section data near thermal energies

• Employing  this 𝜎𝜎 𝐸𝐸 in the general equation 𝜎𝜎𝜎𝜎 = 8
𝜋𝜋𝜋𝜋

1
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 ∫0

∞𝜎𝜎 𝐸𝐸 𝐸𝐸exp − 𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑𝑑𝑑,
results in

𝜎𝜎𝑣𝑣 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑆𝑆 0 + 4
𝜋𝜋𝑆̇𝑆 0 𝑘𝑘𝐵𝐵𝑇𝑇 1/2 + 3

4𝑆̈𝑆 0 𝑘𝑘𝐵𝐵𝑇𝑇 + ⋯
14



Thermonuclear rate: Direct neutron-capture

15

Examples (from the                ): 

3He(n,p) 32Si(n,γ) 208Pb(n,γ)

Clear that the main feature is 𝜎𝜎𝜎𝜎 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 over 3 orders of magnitude in T



Thermonuclear rate: Direct charged particle-capture
• Note that the cross section for charged-particle capture depends on the effective geometric 

area of the projectile, described by λ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, and the probability of the charged projectile 
tunneling through the Coulomb barrier of the target

• Applying the WKB approximation to a Coulomb barrier, it is pretty straight-forward to show that 
the transmission coefficient (a.k.a tunneling probability) is approximately
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸 = exp(−2𝜋𝜋𝜂𝜂),

where the factor with the Sommerfeld parameter is 2𝜋𝜋𝜂𝜂 = 2𝜋𝜋 𝑒𝑒2

ℏ𝑐𝑐
𝑍𝑍1𝑍𝑍2

𝜇𝜇𝑐𝑐2

2𝐸𝐸

• For 𝐸𝐸 in MeV and 𝐴𝐴 in atomic mass units (1u = 931.5MeV/c2): 
2𝜋𝜋𝜂𝜂 = 0.989𝑍𝑍1𝑍𝑍2

1
𝐸𝐸

𝐴𝐴1𝐴𝐴2
(𝐴𝐴1+𝐴𝐴2)

• Removing the trivial energy dependency:
𝜎𝜎𝑐𝑐𝑐.𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸) = 1

𝐸𝐸
exp −2𝜋𝜋𝜂𝜂 𝑆𝑆(𝐸𝐸)

• This may seem like pointless algebra,
but note how much more reasonable
extrapolation & visualization becomes:

16
Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Thermonuclear rate: Direct charged particle-capture
• Employing σ(𝐸𝐸) = 1

𝐸𝐸
exp −2𝜋𝜋𝜂𝜂 𝑆𝑆(𝐸𝐸) in 𝜎𝜎𝜎𝜎 = 8

𝜋𝜋𝜋𝜋
1

𝑘𝑘𝐵𝐵𝑇𝑇 3/2 ∫0
∞𝜎𝜎 𝐸𝐸 𝐸𝐸exp − 𝐸𝐸

𝑘𝑘𝐵𝐵𝑇𝑇
𝑑𝑑𝑑𝑑 gives: 

= 8
𝜋𝜋𝜋𝜋

1
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 ∫0

∞ 𝑆𝑆 𝐸𝐸 exp − 𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

− 2𝜋𝜋𝜂𝜂 𝑑𝑑𝑑𝑑

• The integrand is a product of the probability of a charged-particle pair having energy 𝐸𝐸
(from the Maxwell-Boltzmann distribution) and the tunneling probability for that energy

• The integrand maximum (found by solving for the derivative being equal to zero) is:

𝐸𝐸𝐺𝐺 = 0.122 𝑍𝑍12𝑍𝑍22
𝐴𝐴1𝐴𝐴2

(𝐴𝐴1+𝐴𝐴2)
𝑇𝑇92

1/3
MeV 

• Approximating the integrand as a Gaussian
results in a distribution with the 1/𝑒𝑒 width
∆𝐺𝐺= 4 𝐸𝐸𝐺𝐺𝑘𝑘𝐵𝐵𝑇𝑇

3
MeV

• 𝐸𝐸𝐺𝐺 is the Gamow peak and ∆𝐺𝐺 is the width
of the Gamow window, which is roughly
the energy range for which we care about
a charged particle reaction rate for some 𝑇𝑇

17

Rolfs & Rodney, Cauldrons in the Cosmos (1988)

Note: Don’t be too naïve when using the Gamow window estimate.
It’s based on a roughly constant S(E), so the true window of interest could be different (T.Rauscher PRC 2010).

Evaluate the cumulative integrand vs energy 
to calculate the true astrophysical window

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.81.045807


Thermonuclear rate: Direct charged particle-capture
• The S factor is again represented with a Taylor expansion 𝑆𝑆 𝐸𝐸 = 𝑆𝑆 0 + 𝑆̇𝑆 0 𝐸𝐸 + 1

2𝑆̈𝑆 𝐸𝐸 𝐸𝐸2 + ⋯

• As with neutron-capture, it is determined experimentally. Here, by dividing the trivial energy 
dependence from the measured cross section as a function of energy
[Or doing something equivalent with a fancy R-matrix fit, e.g. A.Kontos et al PRC2013)]

• The energy dependent terms of 𝑆𝑆(𝐸𝐸) winds up making the reaction rate integral have several 
temperature-dependent factors, which make for a rather complicated form:
(See C. Iliadis, Nuclear Physics of Stars or Fowler, Caughlan, & Zimmerman, Annu.Rev.Astron.&Astro. (1967))

• This is the inspiration for the functional form
of parameterized reaction rates used in databases,
e.g. JINA REACLIB (R. Cyburt et al. ApJS (2010))

18

http://adsabs.harvard.edu/abs/1967ARA&A...5..525F


Thermonuclear rate: Narrow resonance(s)
•For a resonant reaction, the reaction cross section has the Breit-Wigner form:
𝜎𝜎𝐵𝐵𝐵𝐵,𝑋𝑋 𝑎𝑎,𝑏𝑏 𝑌𝑌(𝐸𝐸) = 𝜋𝜋 λ

𝜋𝜋

2 2𝐽𝐽+1
(2𝐽𝐽𝑎𝑎+1)(2𝐽𝐽𝑋𝑋+1)

Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)
(𝐸𝐸−𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4

•Employing this in the general form 𝜎𝜎𝜎𝜎 = 8
𝜋𝜋𝜋𝜋

1
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 ∫0

∞𝜎𝜎 𝐸𝐸 𝐸𝐸exp − 𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑𝑑𝑑,
we realize that the contributions of the integrand are pretty negligible outside of 𝐸𝐸𝑅𝑅

•So, we make the approximation 𝜎𝜎𝜎𝜎 𝑟𝑟𝑟𝑟𝑟𝑟 = 8
𝜋𝜋𝜋𝜋

𝐸𝐸𝑅𝑅
𝑘𝑘𝐵𝐵𝑇𝑇 3/2 exp − 𝐸𝐸𝑅𝑅

𝑘𝑘𝐵𝐵𝑇𝑇
∫0
∞𝜎𝜎𝐵𝐵𝐵𝐵 𝐸𝐸 𝑑𝑑𝑑𝑑

•Noting that λ changes little over the resonance  λ → λ𝑅𝑅, writing the statistical factor as 𝜔𝜔, and 
noting the widths Γ are essentially constant over the resonance we find
∫0
∞𝜎𝜎𝐵𝐵𝐵𝐵 𝐸𝐸 𝑑𝑑𝑑𝑑 ≈ 𝜋𝜋 λ𝑅𝑅

𝜋𝜋

2
Γ𝑎𝑎𝑎𝑎Γ𝑏𝑏𝑏𝑏 ∫0

∞ 1
𝐸𝐸−𝐸𝐸𝑅𝑅 2+(Γ)2/4

𝑑𝑑𝑑𝑑 = 2λ𝑅𝑅2𝜔𝜔
Γ𝑎𝑎𝑎𝑎Γ𝑏𝑏𝑏𝑏

Γ

•For obfuscation purposes, we substitute in 𝛾𝛾 for Γ𝑎𝑎𝑎𝑎Γ𝑏𝑏𝑏𝑏
Γ

and call ω𝛾𝛾 the resonance strength
•If we know the cross section at the peak of the resonance, we can make the approximation that 
the integral is half the width times the height:  ∫0

∞𝜎𝜎𝐵𝐵𝐵𝐵 𝐸𝐸 𝑑𝑑𝑑𝑑 ≈ 𝜋𝜋Γ𝜎𝜎(𝐸𝐸𝑅𝑅)

•The resonant rate becomes: 𝜎𝜎𝜎𝜎 𝑟𝑟𝑟𝑟𝑟𝑟 = 2𝜋𝜋
𝜇𝜇𝑘𝑘𝐵𝐵𝑇𝑇

3/2
ℏ2 𝜔𝜔𝜔𝜔 𝑅𝑅exp − 𝐸𝐸𝑅𝑅

𝑘𝑘𝐵𝐵𝑇𝑇 19



Thermonuclear rate: Narrow resonance(s)
•For a reaction with several resonances, the total rate is just the sum.
Using units of MeV for 𝐸𝐸𝑅𝑅,𝑖𝑖 and 𝜔𝜔𝜔𝜔 𝑅𝑅,𝑖𝑖 and amu for 𝐴𝐴𝑖𝑖,

𝑁𝑁𝐴𝐴 𝜎𝜎𝑣𝑣 𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟. =
1.54 × 1011

𝐴𝐴1𝐴𝐴2
𝐴𝐴1 + 𝐴𝐴2

𝑇𝑇9
3/2�

𝑖𝑖=1

𝑁𝑁

𝜔𝜔𝜔𝜔 𝑅𝑅,𝑖𝑖exp −
11.6045𝐸𝐸𝑅𝑅,𝑖𝑖

𝑇𝑇9
cm3

mol s

•But how do I know which resonances matter?
•You might guess the ones in the
Gamow window …but it depends on
the relative widths for the
exit and entrance channels.

•For high temperatures, particle emission
makes the Gamow Window concept
especially dubious

•Nonetheless, the GW is good first guess as
to which resonances are likely important

20
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Thermonuclear rate: Broad resonance

• We’ll specify any resonance
with Γ/𝐸𝐸𝑅𝑅 ≳ 10%  as “broad”

• For such cases, we obviously need to take
into account the energy dependence of
the widths when performing the integral
over energy.

• Broad resonances are a pain because
they make extrapolation of the
reaction rate at very low energies
(via the S-factor) a sketchy enterprise

• One approach to represent
these rates analytically is as a non-resonant
contribution (for 𝐸𝐸 ≪ 𝐸𝐸𝑅𝑅) plus an
analytic contribution, resulting in: 𝜎𝜎𝜎𝜎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜎𝜎𝜎𝜎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑎𝑎1𝑇𝑇𝑏𝑏exp − 𝑎𝑎2

𝑘𝑘𝐵𝐵𝑇𝑇
,

where 𝑎𝑎𝑖𝑖 and 𝑏𝑏 are fit to the rate calculated at several 𝑇𝑇 by integrating over the cross section 21

Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Thermonuclear rate: Subthreshold resonance

22

Rolfs & Rodney, Cauldrons in the Cosmos (1988)

•Broad resonances lurking below the reaction threshold 
can contribute to the rate as well

•This can cause a huge boost over the non-resonant rate
Contributions from a hypothetical sub-threshold 
resonance with various strengths for 9Be(p,α):

E.F. Brown, ApJ (1998)
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Thermonuclear rate: Cluster resonance
• At some point, you’ve likely come across the fact that nuclei can often be described as clusters 

of α-particles
• Based on this fact and experimental evidence, Ikeda (Ikeda et al. Prog.Theor.Phys. 1972) proposed the 

Threshold Rule, which says that “cluster states” should appear near an excitation energy 
required to separate a nucleus into clusters

• Given the α-cluster nature, these are very
strong resonances for α-capture reactions

• The properties of these resonances
can be calculated by generalizing the
shell model to include clusters: shell model
embedded in the continuum (SMEC)

• These resonances can play a
particularly important role in
helium-burning reactions
in stars, e.g. 22Ne(α,n)

“Ikeda diagram”

cluster 
resonance

M. Wiescher et al. Acta. Phys. Pol. B 2020



Aside: Stellar Enhancement Factors (SEFs)
•It’s important to note that the rate calculated using the laboratory cross section is only for the ground-
state of the target

•However, in a hot environment, excited states in the target will be thermally populated
•The stellar enhancement factor (SEF) is the ratio of the stellar rate (which is what we want) to the rate 
determined from the laboratory measurement.

•The SEF is the ratio of the
𝑆𝑆𝑆𝑆𝑆𝑆 =

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
∑𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

• 𝑁𝑁𝐴𝐴 ∑𝑖𝑖 𝑃𝑃𝑖𝑖 𝜎𝜎𝑖𝑖𝑣𝑣 = 𝑁𝑁𝐴𝐴
∑𝑖𝑖 2𝐽𝐽𝑖𝑖+1 exp −𝐸𝐸𝑖𝑖/𝑘𝑘𝐵𝐵𝑇𝑇 𝜎𝜎𝑖𝑖𝑣𝑣
∑𝑖𝑖 2𝐽𝐽𝑖𝑖+1 exp −𝐸𝐸𝑖𝑖/𝑘𝑘𝐵𝐵𝑇𝑇

= 𝑁𝑁𝐴𝐴
𝐺𝐺
∑𝑖𝑖

2𝐽𝐽𝑖𝑖+1
2𝐽𝐽𝑔𝑔𝑔𝑔+1

exp −𝐸𝐸𝑖𝑖/𝑘𝑘𝐵𝐵𝑇𝑇 𝜎𝜎𝑖𝑖𝑣𝑣

•The excited state populations are determined by
the partition function 𝐺𝐺, and they’re typically
estimated using the statistical model
(See e.g. A. Sallaska et al. ApJS 2013)

•E.g., assuming a Back-shifted Fermi Gas level density 
𝐺𝐺𝑍𝑍,𝐴𝐴 𝑇𝑇 = ∑𝑖𝑖 2𝐽𝐽𝑖𝑖 + 1 exp −𝐸𝐸𝑖𝑖/𝑘𝑘𝐵𝐵𝑇𝑇 ≈ 𝜋𝜋

6𝑎𝑎𝑘𝑘𝐵𝐵𝑇𝑇
exp 𝑎𝑎𝑘𝑘𝐵𝐵𝑇𝑇

•A commonly used set of partition functions used
to calculate SEFs comes from
Rauscher & Thielemann ADNDT 2000

24

Charged particle reactions 
with A≤40

A. Sallaska et al. ApJS (2013)

Temperature [GK]

http://adsabs.harvard.edu/abs/2013ApJS..207...18S
http://adsabs.harvard.edu/abs/2000ADNDT..75....1R
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Another Aside: Electron Screening
• If we want to (or have to) sweat the details, 

you’ll note that fusion in the laboratory is not 
the same as fusion in a star, even if you’re at 
the same center-of-mass energy

• An ion impinging on a target in the lab 
experiences screening of the Coulomb force 
due to atomic electrons in the target

• An ion impinging on another nucleus in a star 
experiences screening from the stellar plasma

• This is only of concern for light ions and low 
center of mass energies, meaning it can be of 
interest for stellar burning

• Target screening can be readily estimated 
from measurements, while plasma screening 
is more challenging since generating the 
plasma and making measurements nearby is 
no small task

F. Strieder et al. Naturwissenschaften 2001

Simulation of high-power lasers inducing a coulomb 
explosion in a foam containing nuclides of interest

A.J. Kemp et al. Nat. 
Phys. Comm. 2019



Total thermonuclear reaction rate
•Any and all of the aforementioned rate types can contribute to the overall reaction rate

26

Iliadis, Nuclear Physics of Stars (2007)



Where can I get thermonuclear reaction rates?

27

REACLIB 
database

https://groups.nscl.msu.edu/jina/reaclib/db/

•The Joint Institute for Nuclear Astrophysics 
hosts REACLIB, which contains 
thermonuclear reaction rates in 
parameterized and tabular form

•Rates are based on published 
experimentally-constrained and otherwise 
purely theoretical rates

•REACLIB is a standard in the field,
e.g. it is employed as the default in the 
MESA stellar modeling software

https://groups.nscl.msu.edu/jina/reaclib/db/
https://groups.nscl.msu.edu/jina/reaclib/db/


• In extremely high-density environments (white dwarf cores, neutron star crusts), 
vibrations in the lattice nuclei are a part of are enough to enable nuclear fusion

• This is pycnonuclear (density-driven) fusion
• The pycnonuclear fusion rates depend strongly on the environment properties,

e.g. lattice type,
ion-ion correlations within
the lattice, magnitude of
zero-point vibrations, and
have little connection to
properties measured in the
laboratory (though the
nuclear potential is involved)

• As such, these rates are
extremely uncertain

28

Pycnonuclear reaction rates

Meisel et al. JPG 2018
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R.V. Wagoner ApJS (1969)

•Astrophysical environments typically contain
many nuclei, each of which could in principle
interact with the other
(in practice usually only the photons and light projectiles matter)

•To evaluate what happens, we need to
solve a reaction network

•The basic idea is to see how the abundance changes
for each isotope at each step in time based on the
production and destruction via all mechanisms
and often to include the energy generation
from said reactions

•For each species 𝑖𝑖,
𝑑𝑑𝑌𝑌𝑖𝑖
𝑑𝑑𝑑𝑑

= �
𝑗𝑗,𝑘𝑘

𝑌𝑌𝑗𝑗𝑌𝑌𝑘𝑘𝜌𝜌𝑁𝑁𝐴𝐴 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗→𝑖𝑖 + �
𝑙𝑙

λ𝑙𝑙→𝑖𝑖𝑌𝑌𝑙𝑙 − �
𝑚𝑚

𝑌𝑌𝑖𝑖𝑌𝑌𝑚𝑚𝜌𝜌𝑁𝑁𝐴𝐴 𝜎𝜎𝜎𝜎 𝑖𝑖𝑖𝑖→𝑎𝑎𝑎𝑎𝑎𝑎 + �
𝑛𝑛

λ𝑖𝑖→𝑛𝑛𝑌𝑌𝑙𝑙

Production Destruction
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•You might consider solving the problem explicitly,
stepping through time updating each 𝑌𝑌𝑖𝑖

•The issue is that the ordinary differential equations
𝑑𝑑𝑌𝑌𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑌𝑌)we’re trying to solve are very “stiff”,
i.e. they’re very sensitive to changes
(because reaction rates have steep temperature dependencies)
so we would need super tiny time-steps

•Instead, an implicit approach is needed
•We note that the change in abundance ∆𝑌𝑌𝑖𝑖 is equal
to the rate of change in abundance at the next time-step times the time-step 𝑓𝑓(𝑌𝑌𝑖𝑖(𝑡𝑡 + ∆𝑡𝑡))∆𝑡𝑡

•The rate change in abundance at the next timestep is equal to the rate of change at the present 
time plus the sum of the change in the change due to other species’ abundances changing
𝑓𝑓 𝑌𝑌𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡 = 𝑓𝑓 𝑌𝑌𝑖𝑖 𝑡𝑡 + ∑𝑗𝑗

𝜕𝜕𝜕𝜕(𝑌𝑌𝑖𝑖 𝑡𝑡 )
𝑌𝑌𝑗𝑗

∆𝑌𝑌𝑗𝑗 …where 𝜕𝜕𝜕𝜕(𝑌𝑌𝑖𝑖 𝑡𝑡 )
𝑌𝑌𝑗𝑗

are the elements of the Jacobian matrix

•Solving for the change in all abundances  results in ∆𝑌𝑌 = 𝑓𝑓(𝑡𝑡)
�1
∆𝑡𝑡
− 𝐽𝐽

−1

•Inverting the matrix (the ~ bits) is where most of the computational cost comes in

F.X. Timmes ApJS (1999)



• Even with an implicit network solver, the computational cost can be high
• Often we have to reduce the network size in order to buy more spatial resolution
• You can either do an effective network, e.g. the α-chain
• Or a truncated network, e.g. limited rp-process
• The impact of limiting the network can generally

only be assessed by performing convergence tests
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Further Reading
• Chapter 12: Modern Nuclear Chemistry (Loveland, Morrissey, & Seaborg)
• Chapter 3: Nuclear Physics of Stars (C. Iliadis)
• Chapters 3 & 4: Cauldrons in the Cosmos (C. Rolfs & W. Rodney)
• Lecture Materials on Nuclear Astrophysics (H. Schatz)
• Chapters 10 & 11: Stellar Astrophysics (E.F. Brown)
• “Thermonuclear Reaction Rates”, Fowler, Caughlan, & Zimmerman, Annu.Rev.Astron.&Astro. (1967)
• R.V. Wagoner, Astrophys. J. Suppl. Ser. (1969)
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https://people.nscl.msu.edu/%7Eschatz/PHY983_13/schedule.htm
http://web.pa.msu.edu/people/ebrown/docs/stellar-notes.pdf
http://adsabs.harvard.edu/abs/1967ARA&A...5..525F
http://adsabs.harvard.edu/abs/1969ApJS...18..247W
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