Neutrino-Nucleus Scattering in Neutrino Oscillation Experiments

Shirley Li

NNPSS 2022, Boston

Long-Baseline Experiments

$$0.5 - 5 \text{ GeV } \nu_{\mu} \xrightarrow{\sim 1000 \text{ km}} \nu_{e}$$
 DUNE 15

- 1. Discussions Focus on DUNE and NOvA
- 2. Details Differ for Hyper-K and T2K

Measuring δ_{CP}

Differences Between *v* and *v* Are Important
 Neutrino Energy Reconstruction Is Important
 Level of Accuracy: ≃5%

Measuring δ_{CP}

1. Differences Between ν and $\bar{\nu}$ Are Important

Neutrino Energy Reconstruction Is Important
 Level of Accuracy: ≃5%

Outline

Neutrino-Nucleus Cross Sections

How Do They Affect Measurements

How to Improve

How Do We Compute the Cross Sections?

Measuring Neutrino Oscillation

 $\delta P/P(\nu_{\mu} \to \nu_{e}, E_{\nu}) \propto \delta \sigma_{e}/\sigma_{e}(E_{\nu})$

Expected Accuracy

DUNE Nominal Accuracy on δ_{CP} as An Example

Need to Measure $P(E_{\nu})$ /Predict $\sigma(E_{\nu})$ Accurately ($\leq 5\%$)

Measuring Neutrino Oscillation

Cross Section Predictions No Longer Play A Role??*

Near/Far Cancellation?

Fluxes at Near/Far Detectors Are Different

Near/Far Cancellation?

$$P(\boldsymbol{E}_{\boldsymbol{\nu}}) = \frac{N_e(\boldsymbol{E}_{\boldsymbol{\nu}}, L) / \sigma_e(\boldsymbol{E}_{\boldsymbol{\nu}})}{N_\mu(\boldsymbol{E}_{\boldsymbol{\nu}}, L) / \sigma_\mu(\boldsymbol{E}_{\boldsymbol{\nu}})}$$

Near/Far Cancellation?

$$P(\boldsymbol{E}_{\boldsymbol{\nu}}) = \frac{N_e(\boldsymbol{E}_{\boldsymbol{\nu}}, L)/\sigma_e(\boldsymbol{E}_{\boldsymbol{\nu}})}{N_\mu(\boldsymbol{E}_{\boldsymbol{\nu}}, L)/\sigma_\mu(\boldsymbol{E}_{\boldsymbol{\nu}})}$$

How Do Cross Section Calculations Impact Neutrino Energy Reconstruction?

How Neutrinos Are Detected

DUNE: Liquid Argon Time-Projection Chamber

A Theorist's View of a Neutrino Event

Only Predictions of Neutron Fraction Are Important

A Simulated Neutrino Event

- Proton vs. Pion: Quenching
 - Spectrum: Thresholds
- Number of Final-State Particles:

Nuclear Breakup Energy

All Exclusive Final States Play A Role

The Cross Section Predictions That We Need:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_1\mathrm{d}E_2\ldots\mathrm{d}E_n}$

Not So Much:

 $\sigma(E_{\nu})$

How Are Calculations Used?

Outline

Neutrino-Nucleus Cross Sections

How Do They Affect Measurements How to Improve

How Do We Compute the Cross Sections?

v-Nucleus Cross Sections

Final-State Interactions

v-Nucleon Cross Sections

Beam Energy: 0.5 GeV – 5 GeV

No Controlled Expansion $Q^2 \cong 1 \text{ GeV}^2$

18/34

Kinematic Region

Ankowski, Friedland, SL, in prep

Generator vs. Generator

Ankowski, Friedland, SL, in prep

Compare
$$\sigma(E_{\nu})$$

Informative, But Not Adequate

Generator vs. v Data

Experiments Use Generators, Mostly GENIE

Generator vs. v Data

Experiments Use Generators, Mostly GENIE

Outline

Neutrino-Nucleus Cross Sections

How Do They Affect Measurements How to Improve

How Do We Compute the Cross Sections?

Uncovering Neutrino-Nucleus Cross Section Problems

• • •

MiniBooNE

- Started to Produce Results in 2007
- Designed to Test
 Oscillations of eV
 Sterile Neutrinos
- ≻ 800 MeV @ 500 m

MiniBooNE, 09

Axial Mass m_A Measurement

$$\langle N' | J_W^{\mu} | N \rangle \supset \bar{\mu}'_N \gamma^{\mu} \gamma^5 F_A \mu_N, \qquad F_A(Q^2) = \frac{F_A(0)}{\left(1 + \frac{Q^2}{m_A^2}\right)^2}$$

MiniBooNE, 10

Results Disagree with Previous Experiments

MiniBooNE Setting the Tone

MiniBooNE, 10

Quasi-Elastic And Meson-Exchange Current Channels Are Important

What About Resonance Production and DIS?

MiniBooNE Setting the Tone

What About Resonance Production and DIS?

MiniBooNE Setting the Tone

MiniBooNE, 10

Quasi-Elastic And Meson-Exchange Current Channels Are Important

What About Resonance Production and DIS?

v-A Generators vs. e-A Data

- Same Primary Vertex Models, Only Vector Couplings
- Same Final-State Interactions / Nucleon Distributions

e - p $\langle N' | J_{\gamma}^{\mu} | N \rangle = \bar{\mu}'_{N} \left\{ \gamma^{\mu} F_{1} + \frac{i \sigma^{\mu \nu} q_{\nu}}{2M} F_{2} \right\} \mu_{N}$ $\nu - p$ $\langle N' | J_{W}^{\mu} | N \rangle = \bar{\mu}'_{N} \left\{ \gamma^{\mu} F_{1} + \frac{i \sigma^{\mu \nu} q_{\nu}}{2M} F_{2} + \gamma^{\mu} \gamma^{5} F_{A} + \frac{q^{\mu} \gamma^{5}}{M} F_{P} \right\} \mu_{N}$

E.g., Elastic Scattering:

27/34

e-p Scattering

Neutrino Generators vs. Data

e-p Scattering

Neutrino Generators vs. Data

e-p Scattering

Neutrino Generators vs. Data

GENIE: 50–80% error GiBUU: 20—30% error ⁷⁰⁰ 2.445 GeV @ 20.0° Generator: GENIE Generator: GiBUU 600 $h^2\sigma/d\omega d\Omega ~(10^{-3}\mu b/GeV\cdot sr)$ 500 -RES vs. DIS: Not a 400 **Good Separation** 300 200 · RES 100 Major Implementation 0.6 0.8 1.0 0.6 0.8 1.2 1.2 1.4 1.6 1.0 1.4 1.6 Errors Energy transfer ω (GeV) Energy transfer ω (GeV)

e-A Scattering

Neutrino Generators vs. Data

CLAS & e4v, Nature, 21

Tests Energy Reconstruction Used in CLAS & e4v, Nature, 21 Neutrino Oscillation Measurements

Cross Section Calculations

Observables Are High-Dimensional

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_1\mathrm{d}E_2\ldots\mathrm{d}E_n} \text{ (Exclusive), not } \frac{\mathrm{d}\sigma}{\mathrm{d}E} \text{ (Inclusive)}$$

Much Harder to Compute Exclusive Cross Sections

But the story doesn't end here ...

Conclusions

- 1. GeV Neutrino-Nucleus Scattering is Crucial to the Success of Long-Baseline Neutrino Experiments
- 2. No Complete Theoretical Framework Available; Difficult to Assess Uncertainties
- 3. More Scattering Data is Needed
- 4. New Theoretical Ideas Are Needed