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Lecture 2: The many-body problem and Quantum Monte Carlo 
methods

‣The nuclear many-body problem
‣Nuclear quantum Monte Carlo

‣Variational Monte Carlo
‣Green’s function Monte Carlo

‣Auxiliary Field diffusion Monte Carlo



The nuclear many-body problem
Many-body Schrödinger equation:

H Ψ(r1, r2, . . . rA; s1, s2, . . . , sA; t1, t2, . . . , tA)

= E Ψ(r1, r2, . . . rA; s1, s2, . . . , sA; t1, t2, . . . , tA)

where , , and  are the nucleon coordinates, spins, and isospins , respectively ri si ti
This corresponds to solve  

              coupled second-order differential equations in 3A dimensions.2A × (A
Z)

THE NUCLEAR MANY-BODY PROBLEM
Many-Body Schrödinger Equation (MBSE) for bound states:

HΨ(r1, r2, ..., rA; s1, s2, ..., sA; t1, t2, ..., tA)

= EΨ(r1, r2, ..., rA; s1, s2, ..., sA; t1, t2, ..., tA)

where
ri are the nucleon coordinates in r-space
si are the nucleon spins (= ± 1

2 )
ti are the nucleon isospins (p or n = ± 1

2 )

This corresponds to

2A
× (A

Z) coupled second-order differential equations equations in 3A dimensions!

which is
96 for 4He

17,920 for 8Be

3,784,704 for 12C
This is a challenging many-body problem!

This is a challenging many-body problem!

Erwin Schrödinger 



Benchmarks between the 
different methods is very 
important!

UNEDF SciDAC Collaboration: http://unedf.org/

DefiniPon: the ab-ini5o methods seek to describe atomic nucleus from the ground up by solving the non-
relaPvisPc Schrödinger equaPon for all consPtuent nucleons and the forces between them

The nuclear landscape 

https://en.wikipedia.org/wiki/Atomic_nucleus
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Nucleon


• Quantum Monte Carlo (QMC) methods: a large family of computational methods whose common aim is the study of 
complex quantum systems—J. Carlson et al., RMP. 87, 1067 (2015); J.E. Lynn et al., Ann. Rev. Nucl. Part. Sci 279, 69 
(2019); S. Gandolfi, MP et. al., Front.in Phys. 8 (2020) 117

Nuclear quantum Monte Carlo methods

• Work with bare interactions but local r-space representation of the Hamiltonian

• Stochastic method: based on recursive sampling of a probability density, statistical errors quantifiable and 
systematically improvable

p

p0

V3NV
k = p0 � p

K = (p0 + p)/2

Local 

Non-Local 

Computational resources awarded by the DOE ALCC and INCITE programs 



Variational Monte Carlo

 is the antisymmetric Jastrow wave function depends on the nuclear state under investigation 

For s-shell nuclei:       

 and   are central two- and three-body correlations induced by the NN potential 

, where  and  are variational parameters 

(reduce the two body correlations when a third particle comes between the correlated pairs) 
Single particle wf (no spatial dependence for s-shell nuclei)    ex. 

|ΦJ⟩

|ΦJ⟩ = [ ∏
i<j<k

f c
ijk(rik, rjk)∏

i<j

fc(rij)] |ΦA(JMTT3)⟩

fc(rij) f c
ijk(rik, rjk)

f c
ijk = 1 − qc

1(rij ⋅ rik)(rij ⋅ rjk)(rik ⋅ rjk)e−qc
2(rij+rik+rjk) qc

1 qc
2

|Φα(0000)⟩ = 𝒜 | ↑ p ↓ p ↑ n ↓ n⟩

• One assumes a suitable form for the trial wave function: |ΨT⟩ = (1 − ∑
i<j<k

Fijk)(𝒮∏
i<j

Fij) |ΦJ⟩

• In variational Monte Carlo, one minimize the expectation value of H: 
⟨ΨT |H |ΨT⟩

⟨ΨT |ΨT⟩
= ET ≥ E0

R.B. Wiringa, PRC 43, 1585 (1991)

• Trial wave function involves variational parameters  and minimization algorithms are used to 
search the parameter space: 12-50 parameters

{α}



 are spin-isospin dependent pair correlations induced by the NN:  

  with  and  being variational parameters 

 denotes a symmetrized product over nucleon pairs since, in general, the  do not commute 

  are three-body correlations induced by the NNN potential  

Functions    and    obtained from coupled differential equations with .

Fij Fij = ∑
i=2,6

[ ∏
i<j<k

f p
ijk(rik, rjk)]up(rij)Op

ij

f p
ijk(rij, rik) = 1 − qp

1 (1 − ̂rik ⋅ ̂rjk)e−qp
2(rij+rik+rjk) qp

1 qp
2

SΠi<j Fij

Fijk Fijk = ∑
q

ϵqV
q
ijk(yqrij, yqrik, yqrjk)

fc(rij) up(rij) vij

Variational Monte Carlo

• One assumes a suitable form for the trial wave function: |ΨT⟩ = (1 − ∑
i<j<k

Fijk)(𝒮∏
i<j

Fij) |ΦJ⟩

• In variational Monte Carlo, one minimize the expectation value of H: 
⟨ΨT |H |ΨT⟩

⟨ΨT |ΨT⟩
= ET ≥ E0

R.B. Wiringa, PRC 43, 1585 (1991)



• The operator  indicates an anPsymmetric sum over all possible parPPons of the A parPcles into 4 s-
shell and (A − 4) p-shell ones. 

• The central correlaPon  comes from the structure of an α parPcle (it is the  from the  
wave funcPon).  

• The  is similar to the  at short range, but with a long-range tail going to unity; this helps the 

wave funcPon factorize to a cluster structure like α + d in  or α + t in  at large cluster separaPons. 

𝒜

fss(rij) fc(rij) 4He

fsp(rkl) fc(rij)
6Li 7Li

• The LS coupling scheme is used to obtain the desired JM value of a given state, as suggested by the shell-
model studies of light p-shell nuclei. Different possible LS combinaPons lead to mulPple components in 
the Jastrow wave funcPon.

p-shell nuclei:

|ΦJ⟩ = 𝒜 ∏
i<j<k

f c
ijk ∏

i<j≤4

fss(rij) ∑
LS[n]

βLS[n] ∏
k≤4<l≤A

fsp(rkl) ∏
4<l<m≤A

f [n]
pp (rlm){

Trial function (p-shell nuclei)

|ΨJ 〉 = A

8

<

:

Y

i<j≤4

fss(rij)
X

LS[n]

βLS[n]

Y

k≤4<l≤A

fsp(rkl)
Y

4<l<m≤A

fpp(rlm)

˛

˛

˛Φα(0000)1234
Y

4<l≤A

φLS[n]
p (Rαl)

˘

[Y ml
1 (Ωαl)]LML

⊗ [χl(
1
2ms)]SMS

¯

JM
[νl(

1
2 t3)]T T3

E

9

=

;

Diagonalization
in βLS[n] basis to produce energy spectra E(Jπ

x ) and orthogonal excited states ΨV (Jπ
x )

Expectation values

ΨV (R) represented by vector with 2A × (A
Z) spin-isospin components (or a little less assuming

isospin conservation) for each space configuration R = (r1, r2, ..., rA); expectation values are
evaluated in a Metropolis Monte Carlo random walk, i.e., by a summation over samples drawn
from probability distributionW (R) = |ΨP (R)|2:

〈ΨV |O|ΨV 〉
〈ΨV |ΨV 〉

=
X Ψ†

V (R)OΨV (R)

W (R)
/

X Ψ†
V (R)ΨV (R)

W (R)

Ψ†Ψ is a dot product and Ψ†OΨ a sparse matrix operation.

}|ΦA(LS[n]JJzTz)1234:5…A⟩

Pudliner at al., Phys. Rev. Lej. 74 (1995) 4396-4399



• The  is set to give the appropriate cluster structure outside the α parPcle core, for example is 

similar to the deuteron (triton)   in the case of  ( ). 

•  are p-wave soluPons of a parPcle in an effecPve α + N Woods-Saxon  potenPal and are 
funcPons of the distance between the center of mass of the α core and nucleon l; they may be different 
for different LS[n] components. 

• Except for closed-shell nuclei, the complete trial wave funcPon is constructed by taking a linear set of 
states with the same total angular momentum and parity. Typically these correspond to the lowest 
shell-model states of the system.

fpp(rlm)

fc(rij) 6Li 7Li

ϕLS[n]
p (Rαl)

βLS[n]

• The LS coupling scheme is used to obtain the desired JM value of a given state, as suggested by the shell-
model studies of light p-shell nuclei. Different possible LS combinaPons lead to mulPple components in 
the Jastrow wave funcPon.
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f c
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fsp(rkl) ∏
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Trial function (p-shell nuclei)
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[Y ml
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⊗ [χl(
1
2ms)]SMS

¯

JM
[νl(

1
2 t3)]T T3

E

9

=

;

Diagonalization
in βLS[n] basis to produce energy spectra E(Jπ

x ) and orthogonal excited states ΨV (Jπ
x )

Expectation values

ΨV (R) represented by vector with 2A × (A
Z) spin-isospin components (or a little less assuming

isospin conservation) for each space configuration R = (r1, r2, ..., rA); expectation values are
evaluated in a Metropolis Monte Carlo random walk, i.e., by a summation over samples drawn
from probability distributionW (R) = |ΨP (R)|2:

〈ΨV |O|ΨV 〉
〈ΨV |ΨV 〉

=
X Ψ†

V (R)OΨV (R)

W (R)
/

X Ψ†
V (R)ΨV (R)

W (R)

Ψ†Ψ is a dot product and Ψ†OΨ a sparse matrix operation.

}|ΦA(LS[n]JJzTz)1234:5…A⟩

Pudliner at al., Phys. Rev. Lej. 74 (1995) 4396-4399



Correlation functions
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• The  is small at short distances, to 
reduce the contribution of the 
repulsive core of  , and peaks at an 
intermediate distance corresponding 
to the maximum attraction of  .  

• The noncentral  are all relatively 
small; the most important is the long-
range tensor-isospin part , 
induced by the OPEP   

• The , shown in Fig. for  nuclei, 

is similar to the  at short range, 
but with a long-range tail going to 
unity; this helps the wave function 
factorize to a cluster structure like α + 
d in  at large cluster separations.

fc(r)

vij

vij

up(r)

utτ(r)

fsp(r) 6Li
fc(r)

6Li

CorrelaPon funcPons in light nuclei:



• Since the nuclear interacPon is spin-isospin dependent, the trial state is a sum of complex amplitudes 

for each spin-isospin state of the system:   |ΨT⟩ = ∑
is≤ns,it≤nt

a(is, it; R) |χis νit⟩ .

• The  many-body spin states can be wrijen as 
 and the isospin 

ones can be recovered by replacing  with n and  with p.

ns = 2A |χ1⟩ = | ↓1 , ↓2 , …, ↓A ⟩ ,
|χ2⟩ = | ↑1 , ↓2 , …, ↓A ⟩ , |χ3⟩ = | ↓1 , ↑2 , …, ↓A ⟩ , … , |χns

⟩ = | ↑1 , ↑2 , …, ↑A ⟩
↓ ↑

• To construct the trial state, one starts from the mean-field component . 
For fixed spaPal coordinates , the spin-isospin independent correlaPons needed to retrieve  
are simple mulPplicaPve factors, common to all spin amplitudes. The symmetrized product of pair 
correlaPon operators is evaluated by successive operaPons for each pair, sampling their ordering.

|ΦA(LS[n]JJzTz)1234:5…A⟩
R |ΦJ⟩

ComputaPonal implementaPon:

NOTE: sampling the order of the pairs help reducing the computaPonal cost since the number of possible orders is , where 
 is the number of pairs. This introduces relaPvely lijle staPsPcal variance, because the different orders contain 

the same linear terms and differ only at  and above.

P!
P = 1/2 A(A − 1)

O(u2
p)



Gandolfi et al. Nuclei: QMC and �EFT Interactions

In standard VMC calculations, one usually takes Wpq(R) = |Re( †

T,p(R) T,q(R))|, even though
simpler choices might be used to reduce the computational cost. The Metropolis algorithm is used to
stochastically sample the probability distribution Wpq(R) and obtain a collection of uncorrelated or
independent configurations.

Since the nuclear interaction is spin-isospin dependent, the trial state is a sum of complex amplitudes
for each spin-isospin state of the system

| T i =
X

isns,itnt

a(is, it;R)|�is �iti . (23)

The ns = 2A many-body spin states can be written as

|�1i = | #1, #2, . . . , #Ai

|�2i = | "1, #2, . . . , #Ai

|�3i = | #1, "2, . . . , #Ai

. . .

|�nsi = | "1, "2, . . . , "Ai (24)

and the isospin ones can be recovered by replacing # with n and " with p. Note that, because of charge
conservation, the number of isospin states reduces to nt =

�A
Z

�
. To construct the trial state, one starts from

the mean-field component |�A(LS[n]JJzTz)1234:5...Ai. For fixed spatial coordinates R, the spin-isospin
independent correlations needed to retrieve |�Ji are simple multiplicative factors, common to all spin
amplitudes. The symmetrized product of pair correlation operators is evaluated by successive operations
for each pair, sampling their ordering as alluded to earlier. As an example, consider the application of the
operator �1 ·�2 on a three-body spin state (for simplicity we neglect the isospin components). Noting that
�i · �j = 2P�

ij � 1, where 2P�
ij exchanges the spin of particles i and j, we obtain:

�1 · �2

0

BBBBBBBBBBBBBBB@

a"""

a""#

a"#"

a"##

a#""

a#"#

a##"

a###

1

CCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBB@

a"""

a""#

2a#"" � a"#"

2a#"# � a"##

2a"#" � a#""

2a"## � a#"#

a##"

a###

1

CCCCCCCCCCCCCCCA

. (25)

Hence, the many-body spin-isospin basis is closed under the action of the operators contained in the
nuclear Hamiltonian.

Most of the computing time is spent on spin-isospin operations like the one just described. They amount
to an iterative sequence of large sparse complex matrix multiplications that are performed on-the-fly using
explicitly coded subroutines, which mainly rely on three useful matrices. The first matrix m(i, is) gives
the z-component of the spin of particle i associated to the many-body spin-state is. A second useful matrix

This is a provisional file, not the final typeset article 10

• Most of the compuPng Pme is spent on spin-isospin operaPons like the 
one just described.  

• They amount to an iteraPve sequence of large sparse complex matrix 
mulPplicaPons which mainly rely on three useful matrices: 

- : -component of the spin of parPcle  associated to the many-
body spin-state . 

- : number of the many-body spin state obtained by 

exchanging the spins of parPcles  and , belonging to the pair labeled 
 in the state  

- : the number of the spin state obtained by flipping the spin 

of parPcle  in the spin state

m(i, is) z i
is

nexch(kij, is)
i j

kij is
nflip(i, is)

i

• Consider the applicaPon of the operator  on a three-body spin state (for simplicity we neglect the 
isospin components). NoPng that  exchanges the spin of parPcles i and j, we obtain:

σ1 ⋅ σ2
σi ⋅ σj = 2 𝒫σ

ij − 1



• The acPon of  can be expressed as:  σ1 ⋅ σ2

σ1 ⋅ σ2 ∑
is,it

a(is, it; R) |χis χit⟩ = ∑
is,it

[2a(is, it; R) − a(nexch(kij, is), it; R)] |χis χit⟩

• By uPlizing this representaPon, we only need to evaluate  operaPons for each pair, instead of the 
 operaPons that are required using a simple matrix representaPon in spin space.  

• The tensor operator is slightly more complicated to evaluate and requires both matrices  and 
.

2A

2A × 2A

m(i, is)
nflip(i, is)

subroutine sigdotsig( cwvout,cwvin,i,j)
complex(kind=kind(0.d0)),dimension(0:nspin0m,ntau0) :: cwvout,cwvin
do is=0,nspin0m
iex=ispex(is,i,j) ! exchange spins i and j in is, store in iex
cwvout(is,:)= 2.d0*cwvin(iex,:)-cwvin(is,:)
enddo
end subroutine

subrouPne for  σi ⋅ σj



• The expectaPon values contain mulP-dimensional integrals over all parPcle posiPons,  ,R = (r1, r2, . . . , rA)

ExpectaPon values:

• StochasPc integraPon methods are useful to calculate such integrals over many variables. They are based on the 
central limit theorem of Riemann integrals, which asserts that:

∫ ℐ(R)dR = ∫
ℐ(R)
𝒲(R)

𝒲(R)dR = [ 1
Nc

Nc

∑
I=1

ℐ(RI)
𝒲(RI) ]∫ 𝒲(R)dR for Nc → ∞

⟨𝒪⟩ =
∫ dRΨ†

T(R)𝒪ΨT(R)
∫ dRΨ†

T(R)ΨT(R)

‣  is the integrand,  is a suitably chosen, normalizable, posiPve, real funcPon of  called weight funcPon 
(represenPng a probability distribuPon) 
‣  The  configuraPons  are distributed accordingly with the probability   

‣  We sample points  from  and evaluate  for each point 

‣  The error typically goes like , and depends criPcally upon the choice of 

ℐ(R) 𝒲(R) R

Nc RI=1,Nc
𝒲(R)

RI 𝒲(R)
ℐ(RI)
𝒲(RI)

1/ Nc 𝒲(R)

 where for simplicity the sum over the spin and isospin states is implied. 



The Metropolis algorithm:

• The algorithm saPsfies the detailed balance equaPon:
𝒲(Ri)T(Ri → Rj) = 𝒲(Rj)T(Rj → Ri)

•  A simple soluPon of the equaPon above is given by   T(Ri → Rj) = min[1,
𝒲(Rj)
𝒲(Ri) ]

‣  For instance if  then  and  and the detailed balanced equaPon is saPsfied 𝒲(Ri) > 𝒲(Rj) T(Ri → Rj) =
𝒲(Rj)
𝒲(Ri)

T(Rj → Ri) = 1

• To obtain the configuraPons  distributed accordingly with the probability  . These configuraPons are called 

“samples of ” (see: Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., ”EquaPons of state 
calculaPons by fast compuPng machines”, J. Chem. Phys. 2121(6) 1087 (1953)).

RI=1,Nc
𝒲(R)

𝒲(R)

• Based on a Markov Chain Monte Carlo algorithm where a Markov process is a random walk with a selected 
probability for making a move. The new move is independent of the previous history of the system. 

• The reason for choosing a Markov process is that when it is run for a long enough Pme (steps) starPng with a 
random state, we will eventually reach the most likely state of the system.



The Metropolis algorithm: Acceptance-RejecPon method

• PracPcally generate a random number  uniformly distributed in the interval 0 and 1. If  then 

the step is accepted otherwise is rejected 

s w =
𝒲(R′ )
𝒲(RI)

≥ s

• Consider  being the  configuraPon. To obtain the next move in the walk we make a random step 

 and accept it with probability  .

RI Ith

R′ = R + ΔR T(RI → R′ ) = min[1,
𝒲(R′ )
𝒲(RI) ]

‣  If the step is accepted then , if rejected RI+1 = R′ RI+1 = RI

 coordinates of the A particles,  
random number uniformly distributed in the interval 0 and 1.
x′ i = xi,I + (ϵi − 0.5)l for i = x, y, z ϵi

{
∫ ℐ(R)dR = ∫

ℐ(R)
𝒲(R)

𝒲(R)dR = [ 1
Nc

Nc

∑
I=1

ℐ(RI)
𝒲(RI) ]∫ 𝒲(R)dR for Nc → ∞

• In order to maximize the efficiency of the algorithm, you are shooPng for an acceptance rate of 25-50%. The 
size step  is chosen to saPsfy this condiPon.l

• The configuraPons generated by a Metropolis walk are strongly correlated: a number of substeps are osen made 
to obtain the configuraPon  from . Note the iniPal configuraPons of the walk are dependent upon the iniPal 
value of  where the walk started; hence the first few hundred steps of the walk are generally discarded.

RI+1 RI
R



• In our case we need to stochasPcally evaluate:

• The subscripts p and q specify the order of operators in the les- and right-hand-side wave funcPons. 
Again a complete sum over all spin-isospin variables is implied. 

• In VMC calculaPons, one usually takes . The Metropolis algorithm 

produces a set of configuraPons  whose density is proporPonal to .

Wpq(R) = |ℜ(Ψ†
T,p(R)ΨT,q(R)) |

[R, p, q] Wpq(R)

• ExpectaPon values have a staPsPcal error which can be esPmated by the standard deviaPon : 

 where  is the number of staPsPcally independent samples. Block averaging 

schemes can be used to esPmate the autocorrelaPon Pmes and determine the staPsPcal error.

σ

σ = [⟨𝒪2⟩ − ⟨𝒪⟩2

Nc − 1 ]
1/2

Nc

ExpectaPon values:

⟨𝒪⟩ =
∑p,q ∫ dR

Ψ†
T,p(R)𝒪ΨT,q(R)

Wpq(R) Wpq(R)

∑p,q ∫ dR
Ψ†

T,p(R)ΨT,q(R)

Wpq(R) Wpq(R)
=

∑p,q ∑Nc
I=1

Ψ†
T,p(RI)𝒪ΨT,q(RI)

Wpq(RI)

∑p,q ∑Nc
I=1

Ψ†
T,p(RI)ΨT,q(RI)

Wpq(RI)

for Nc → ∞



ExpectaPon values:

• The expectaPon values are evaluated by having the operators act enPrely on the right hand side of 
. The matrix machinery used to apply the spin-dependent correlaPon operators is also used to 

evaluate . A simple scalar product of this quanPty with , provides the numerator of the 

local esPmate .

ΨT(R)
𝒪 |ΨT,p⟩ ⟨ΨT,q |

Ψ†
T,q(R)𝒪ΨT,p(R)/Wpq(R)

• The first and second derivaPves of the wave funcPon are numerically computed by means of the 
two- and three-point stencil, respecPvely. To determine the kinePc energy,  6A evaluaPons of  
are needed.

∼ ΨT(R)

• Using some tricks, the acPon of the square of angular momentum terms in the potenPal can be 
evaluated on  an addiPonal 3A(A-1)/2 Pmes. ΨT(R)



A simplified VMC calculaPon:

1. IniPalizaPon: Fix the number of Monte Carlo steps and thermalizaPon. Choose an iniPal  and variaPonal 
parameters  and calculate the weight funcPon . Define also the value of the stepsize to be used when 
moving from one value of  to a new one.  

2. IniPalize the energy and the variance.  
3. Start the Monte Carlo calculaPon with a loop over a given number of Monte Carlo cycles  

(a) Calculate a trial posiPon  where  depends on a random variable  ∈ [0, 1] and stepsize 
(b) Use then the Metropolis algorithm to accept or reject this move by calculaPng the raPo 

. If , where s is a random number s ∈ [0, 1], the new posiPon is accepted, else we 
stay at the same place.  

(c)  If the step is accepted, then we set .  
(d)  Update the local esPmator and the variance.

R
{α} W(R)

R

R′ = R + ΔR ΔR ϵ

w = W(R′ )/W(R) w ≥ s

R = R′ 

4. When the Monte Carlo sampling is finished, we calculate the mean and the standard deviaPon.  
5. Finally, we may print our results to a specified file.



Initialize , set  and R {α}
ΨT(R, {α})

Suggest a move

Compute acceptance ratio 
w
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Get local estimator

Last 
move?

Collect samples

Reject the move: 
Rnew = Rold

Last MC?

THE END
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SCALING OF VMC CALCULATION TIME WITH NUCLEUS

Scales with # particles (6A w.f. calculations for kinetic energy) ×
# pairs (operations to construct w.f.) × spin×isospin (size of w.f. vector):

A Pairs Spin×Isospin
Q

(/8Be)
4He 4 6 16×2 0.001
5He 5 10 32×5 0.010
6Li 6 15 64×5 0.036
7Li 7 21 128×14 0.33
8Be 8 28 256×14 1.
9Be 9 36 512×42 8.7

10Be 10 45 1024×90 52.
11B 11 55 2048×132 200.
12C 12 66 4096×132 530.
14C 14 91 16384×1001 26,000.
16O 16 120 65536×1430 220,000.

40Ca 40 780 1.1×1012 × 6.6×109 2.8×1020

8n 8 28 256×1 0.071
14n 14 91 16384×1 26.

Scales with # parPcles (6A w.f. calculaPons for kinePc energy) × # pairs (operaPons to construct w.f.) × spin×isospin 
(size of w.f. vector):

Scaling of VMC calculaPon Pme with the nucleus



Green’s Function Monte Carlo
• The Green’s function Monte Carlo (GFMC) overcomes the limitations of VMC by using a projection technique to 

determine the true ground-state:  
-  is the imaginary time, and  is a parameter used to control the normalization of the evolved state 
- excited states can be computed within GFMC since imaginary-time diffusion yields to the lowest-energy 

eigenstate with the same quantum numbers as

|Ψ0⟩ ≡ limτ→∞ |Ψ(τ)⟩ = limτ→∞e−(H−ET)τ |ΨT⟩
τ ET

|ΨT⟩

• The method relies on the observation that the trial wave function can be expanded in the complete set of 

eigenstates of H,  with eigenvalues :  with . 

-  since .  

- When  than the norm of  is  independent of 

|Ψn⟩ En |ΨT⟩ = ∑
n

cn |Ψn⟩ H |Ψn⟩ = En |Ψn⟩

lim
τ→∞

e−(H−ET)τ |ΨT⟩ = lim
τ→∞ (∑

n

cne(ET−En)τ |Ψn⟩) = c0e(ET−E0)τ |Ψ0⟩ ET − E0 > ET − Ei>0

ET = E0 Ψ(τ → ∞) c2
0 τ

• Except for some specific cases, the direct computation of the propagator  for arbitrary values of  is 
typically not possible.

e−Hτ τ



Imaginary short-Pme propagaPon

• For small imaginary times  with  large, the calculation is tractable, and the full propagation to 
large imaginary times  can be recovered through the following path integral (neglecting spin-isospin 
indices) 

• We defined the short-time propagator, or Green's function, 

•

δτ = τ/N N
τ

<latexit sha1_base64="ubFw65m7ER8mDVdXix3KYh04awk="></latexit>

G�⌧ (Ri+1,Ri) = hRi+1|e�H�⌧ |Rii .

<latexit sha1_base64="CfOjfMvlYn6VFWtACoKYL6UA3l0="></latexit>

 (⌧,RN ) =

Z N�1Y

i=0

dRi hRN |e�(H�ET )�⌧ |RN�1i · · · hR1|e�(H�ET )�⌧ |R0ihR0| T i .

<latexit sha1_base64="XW8pst1/W5Y0mu2bZuFo/aDjanA="></latexit>

 (⌧,RN ) =

Z
dRN�1 . . . dR2dR1dR0G�⌧ (RN ,RN�1) . . . G�⌧ (R2,R1)G�⌧ (R1,R0) V (R0)

• The short-Pme propagator should allow as large a Pme step  as possible, because the total 
computaPonal Pme for propagaPon is proporPonal to 

δτ
1/δτ

• The wave funcPon at imaginary Pme  can be wrijen in an integral form  τ + δτ

Ψ(τ + δτ, Ri+1) = ∫ dRiGδτ(Ri+1, Ri)Ψ(τ, Ri)



Imaginary short-Pme propagaPon: Trojer-Suzuki expansion

• A common approximaPon for the short-Pme propagator is based upon the Trojer-Suzuki expansion: 

-   is the kinePc energy giving rise to the free-parPcle propagator; for non-relaPvisPc systems, it can be 
expressed as a simple Gaussian in configuraPon space (this is easy to see it in 1D)

 with  

-  The exponenPals of the two-body potenPals (difficult to calculate directly in nuclei since the interacPons do 
not commute) can be approximated to first order by turning the sums over pairs (remember that 

  and we are neglecPng three nucleon potenPal for now) in the exponent 

into a symmetrized product of exponenPals of the individual pair potenPals 

 where  indicates a symmetrizaPon over orders of pairs.

T

⟨Ri+1 |e−Tδτ |Ri⟩ = G0
δτ(Ri+1, Ri) = [ 1

λ3π3/2 ]
A

e−(Ri+1−Ri)2/λ2 λ2 = 4 ℏ2

2m δτ

V(R) ≡ ∑
i<j

vij = ∑
i<j

∑
p

vp(rij)Op
ij

⟨R |e−Vδτ/2 |R⟩ ∼ 𝒮∏
i<j

exp( −
δτ
2 ∑

p=1,6

vp(rij)Op
ij) 𝒮

Gδτ(Ri+1, Ri) = e−V(Ri+1)δτ/2⟨Ri+1 |e−Tδτ |Ri⟩e−V(Ri)δτ/2 + o(δτ3)



- The first six terms of the potenPal can be easily exponenPated since they are diagonal in coordinate space. 
- Momentum dependent terms cannot be treated this way: a way is to expand the exponenPal of the 
momentum terms to first order in  and use integraPon by parts to let the derivaPves act on the free-
parPcle Green's funcPon. This is applied to the terms in the potenPal that are linear in momentum, such as 

 and  
- Terms that are quadraPc in the momentum cannot be evaluated to first order in this manner.

δτ

L ⋅ S (L ⋅ S) τi ⋅ τj

Comments about the Trojer-Suzuki expansion:

• The main error in this Trojer-Suzuki expansion approximaPon comes from terms in  having mulPple  —like 

— where T is the kinePc energy, which can become large when parPcles  and  are very close due to 

the large repulsive core in  . This requires a rather small .

e−Hτ vi,j

vi,jTvi,j(δτ)3 i j
vij δτ

NOTE: 

• We use approximaPons to the full NN potenPals, such as the AV8’ interacPon, projecPon on the first eight 
operators (reproduce phase shiss in , , , and ) . (Note: The error due to this approximaPon is 
esPmated by direct comparison with Faddeev calculaPons with AV8’ and AV18. It seems to be less than 0.3%). 

• The isoscalar part of the Coulomb interacPon can also be easily included in the propagator; however the small 
isospin breaking terms of the electromagnePc and strong interacPons are treated perturbaPvely.

1S0
1P1

3PJ
3S1 −3 D1



• The most common one (the Schmidt-Lee many-body Green’s funcPon) consists in building the Green's 
funcPon operator as a product of exact two-body propagators 

Imaginary short-Pme propagaPon: exact two-body propagator

• It has been shown that that including the exact two-body propagator allows much larger Pme steps (a 
factor of 5-10 larger Pme steps ) than the simple approximaPon, so the computaPonal Pme will be 
reduced.

δτ

• The two-body interacPons are replaced with the exact two-body Green’s funcPon .gij

Gδτ(Ri+1, Ri) = 𝒮∏
j<k

gjk(rjk, i, rjk, i+1)
g0

jk(rjk, i, rjk, i+1)
G0

δτ(Ri+1, Ri)

-  is the exact two-body propagator where  

-  is the two-body free-parPcle propagator

gjk(rjk, i, rjk, i+1) = ⟨rjk, i |e−Hjkδτ |rjk, i+1⟩ Hjk = −
1
m

∇2
jk + vjk

g0
jk(rjk, i, rjk, i+1)



• Terms quadraPc in the angular momentum can in principle be accounted for into the exact pair 
propagator. However, the Monte Carlo sampling can lead to large variance. Thus, simplified AV8’ 
potenPals are also used in the pair propagator, even though in this case no approximaPons in 
treaPng  and  terms are necessary. 

• The 3N interacPon  is included symmetrically, and the full propagaPon for each step 

L ⋅ S (L ⋅ S) τi ⋅ τj

Vijk

Gδτ(Ri+1, Ri) = (1 − ∑
i<j<k

Vijk(Ri+1)) 𝒮∏
j<k

gjk(rjk, i, rjk, i+1)
g0

jk(rjk, i, rjk, i+1)
G0

δτ(Ri+1, Ri)(1 − ∑
i<j<k

Vijk(Ri))

Imaginary short-Pme propagaPon: exact two-body propagator



Mixed esPmates:

• One we have defined the propagator, we will be interested to calculate expectaPon values of operators:

• The set of configuraPons   make a path in the 3A dimensional configuraPon space  
and the integrals over  are carried out using stochasPc methods. 

PN = RN, …, R1, R0
PN

• These are difficult to calculate, so we will use mixed esPmates 

   

where we are always considering 

⟨𝒪⟩M =
⟨ΨT |𝒪 |Ψ(τ)⟩

⟨ΨT |Ψ(τ)⟩
=

∫ dRNΨT(RN)𝒪Ψ(τ, RN)
∫ dRNΨT(RN)Ψ(τ, RN)

=
∫ dPNΨT(RN)𝒪Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)

∫ dPNΨT(RN)Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)
τ → ∞

⟨𝒪⟩ =
⟨Ψ(τ) |𝒪 |Ψ(τ)⟩

⟨Ψ(τ) |Ψ(τ)⟩
τ → ∞



Mixed esPmates:

• In pracPce, a set of configuraPons, typically called walkers, are simultaneously evolved in imaginary 
Pme, and then used to calculate observables once convergence is reached.  

• In the GFMC method, each walker contains the nucleon posiPons and a complex amplitude for each 
spin/isospin state of the nucleus, implying an unfavorable exponenPal scaling with the number of 
nucleons. 

• Since the Hamiltonian commutes with the imaginary Pme propagator, we can

 where  is the expectaPon of H in the 

state . It is therefore   and approaches  from above as .

⟨H⟩M =
⟨ΨT |H |Ψ(τ)⟩

⟨ΨT |Ψ(τ)⟩
=

⟨Ψ(τ/2) |H |Ψ(τ/2)⟩
⟨Ψ(τ/2) |Ψ(τ/2)⟩

= E(τ/2) E(τ/2)

Ψ(τ/2) ≥ E0 E0 τ → ∞



Mixed esPmates: operators

• Let consider ; we can re-write the expectaPon value of  asδΨ = Ψ(τ) − ΨT ⟨𝒪⟩

• When  is small, therefore the difference between the mixed and the variaPonal esPmates is 
small, we can use this equaPon to calculate the ground-state expectaPon value neglecPng  
term. 

δΨ
δΨ2

where the the second term is the variaPonal matrix element.

⟨𝒪⟩ = 2
⟨ΨT |𝒪 |Ψ(τ)⟩

⟨ΨT |Ψ(τ)⟩
−

⟨ΨT |𝒪 |ΨT⟩
⟨ΨT |ΨT⟩

+ δΨ2

• If the  and  are significantly different so that the extrapolaPon may not be valid,  is 
clearly poor.

⟨𝒪⟩M ⟨𝒪⟩V ΨT



Sampling of the paths:

• The path integrals in  are evaluated stochasPcally. Consider an ensemble of paths denoted as , 
that contains  paths, be sampled by a normalized weight funcPon . 

• Each path consists of N steps, where each step contains a sample of 3A parPcle coordinates (and full 
spin-isospin state), as well as a sets of operators orders used to sample the symmetrized product for the 
pair operators in the 

⟨𝒪⟩M {P}
Np P(PN)

ΨT

• For a given path , consider: 

 , 

PN

𝒩PN
=

ΨT(RN)𝒪Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)
P(PN)

𝒟PN
=

ΨT(RN)Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)
P(PN)

• The average value of  is given by:  with a staPsPcal error being 

proporPonal to . Also in this case to improve the staPsPcal error block averaging on  is 

performed.

⟨𝒪⟩M ⟨𝒪⟩M =
𝒩
𝒟

=
∑{P} 𝒩PN

∑{P} 𝒟PN

1/ Np {P}



Sampling of the paths:

• Most calculaPons use the weight funcPon:

• The importance funcPon  is used in sampling and hence should be posiPve definiteI(R)

• The idea is that the iniPal configuraPons are sampled from and the quanPty in bracket 

is referred as the importance sampled Green’s funcPon 

I(R0) |ΨT(R0) |

GI(Ri, Ri−1) = [I(Ri)G(Ri, Ri−1)
1

I(Ri−1) ]

• The probability of the path  depends implicitly upon all of the steps in the path, but is 
decomposed into an iniPal weight , Pmes a product of weights for each step.  

P(P)
I(R0) |ΨT(R0) |

• For a given path , note that:  and PN 𝒩PN
=

ΨT(RN)𝒪ΨT(R0)
I(RN) |ΨT(R0) |

𝒟PN
=

ΨT(RN)ΨT(R0)
I(RN) |ΨT(R0) |

P(P) = ∏
i=1,N

[I(Ri)G(Ri, Ri−1)
1

I(Ri−1) ]I(R0) |ΨT(R0) | = I(RN) ∏
i=1,N

[G(Ri, Ri−1)] |ΨT(R0) |



Sampling of the paths:
• ImplemenPng the algorithm to sample the paths is straighzorward. For simplicity choosing 

, the iniPal ( ) configuraPon  for each path is obtained as in the VMC by sample 

 using Metropolis method. 

•

I(R) = |ΨT(R) | τ = 0 R0

|ΨT(R) |2

• The subsequent configuraPons , at , are obtained sequenPally from , by iteraPng with 
the importance-sampled Green’s funcPon , 

Ri τ = iδτ Ri−1
GI

• Describes the evoluPon of the density  with , hence the configuraPons are 
distributed with this density.  

•

I(Ri) |ΨT(Ri) | τ = iδτ Ri

• This implies that we can sample the points along the path directly from  but this is typically 

not possible. One must sample from an approximate  and then use weighPng and branching 
techniques.

GI(Ri, Ri−1)
G̃I(Ri, Ri−1)

I(Ri)Ψ(Ri) = ∫ GI(Ri, Ri−1)I(Ri−1)Ψ(Ri−1)dRi−1



Sampling of the paths:

• If points are sampled from an approximate ,  it is convenient to define a weightG̃I(Ri, Ri−1)

w̃(Ri, Ri−1) =
GI(Ri, Ri−1)
G̃I(Ri, Ri−1)

• Choosing  will modify expressions for the the numerator and 

denominator, by mulPplying the contribuPon of each path by the product of the product of  

•

P(PN) = ∏
i=1,N

G̃I(Ri, Ri−1)I(R0) |ΨT(R0) |

w̃(Ri, Ri−1)

𝒩PN
= W(PN)

ΨT(RN)𝒪ΨT(R0)
I(RN) |ΨT(R0) |

, 𝒟PN
= W(PN)

ΨT(RN)ΨT(R0)
I(RN) |ΨT(R0) |

 with W(PN) = ∏
i=1,N

w̃(Ri, Ri−1)



Sampling of the paths:
• What we really do is the following:

‣ We sample a number of points   for  from   R′ j j = 1, nsamp G0(R′ j, Ri−1)

‣  We define a scalar spin-independent importance sample Green’s funcPon , posiPve and fast to 
calculate and approximate   

GS
I (Ri, Ri−1)

GI(Ri, Ri−1)

‣  This procedure implicitly defines a , and requires a weight:  G̃I w̃(Ri, Ri−1) = [ 1
nsamp ∑

j=1,samp

GS
I (R′ j, Ri−1)

G0(R′ j, Ri−1) ] GI(Ri, Ri−1)
GS

I (Ri, Ri−1)

‣  For each of the  points we calculate  and the   is picked from the set  with 

probability proporPonal to   

nsamp GS
I (R′ j, Ri−1) Ri R′ j

GS
I (R′ j, Ri−1)

G0(R′ j, Ri−1)

•  contains approximaPons to the dominant physics in the propagator and the trial wave funcPon                                                                  GS
I

GS
I (R, R′ ) = |ΨJ(R) |GS(R, R′ )

1
|ΨJ(R′ ) |

 where  is spin-isospin independent interacPons average central potenPal in the S-wave GS

• We use  I[ΨT(Ri, Ψi(Pi)] = |∑
α

Ψ†
T,α(Ri)Ψi,α(Pi) | + ϵ∑

α

|Ψ†
T,α(Ri)Ψi,α(Pi) |



Sign problem:
• As in standard Fermion diffusion Monte Carlo algorithms, the GFMC method suffers from the Fermion 
sign problem that arises from stochasPcally evaluaPng the mixed esPmates. 

• The imaginary-Pme propagator is a local operator, but anPsymmetry is global property of the system. 
 can have bosonic components with lower energy than Fermionic ones, which are exponenPally 

amplified during propagaPon. 

• When the dot product with the anPsymmetric  is taken, the desired Fermionic component is 
projected out in the expectaPon values, but the variance (the staPsPcal error) grows exponenPally with . 

• Because the number of pairs that can be exchanged grows with , the sign problem also grows 
exponenPally with the number of nucleons.

|Ψ(τ)⟩

ΨT
τ

A

15.2. THE FERMION SIGN PROBLEM 359

V
(R) < 0

R o

R o
R o

R o

R n

R n

R n

R n

V
(R) > 0

Nodal  Surface

Figure 15.1: Examples of GFMC paths which cross and do not cross nodal surfaces of the
real variational wave function of a simple many fermion system. The points labeled R0 and
Rn denote the beginning and final configuration, at τ = n∆τ , of each path.

When τ is small the paths are short, and few cross the nodal surface. All the DPn → +1
as τ → 0. However, we want the limit τ → ∞ in which Ψ(τ,R) → Ψ0(R). In this limit
there is equal probability for the paths to end in the region of their origin or the other, i.e.
the DPn are equally likely to be +1 or −1. In this limit both D and N → 0, and 〈O〉M is
dominated by statistical fluctuations. This problem is known as the fermion sign problem.

The problem occurs because of walkers originating in the ΨV > 0 region, denoted by
W+, diffusing in the region with ΨV < 0, and the W− walkers diffusing into the ΨV > 0
region. These walkers have DPn = −1, and reduce the magnitudes of N and D. Some of
the methods being studied to overcome this problem attempt to annihilate W± walker pairs
systematically as they cross nodal surfaces [219]. These methods are still being tested in
simple Fermi systems. We will not discuss them here, though they may provide insights to
the treat the sign problem in nuclear GFMC.

15.2.1 Transient Estimates

The 〈O〉M at τ = 0 equals the variational estimate 〈O〉V (Eq. 15.31). It does not suffer
from the fermion sign problem, and can generally be calculated with useful accuracy. In
particular the 〈H〉M(τ = 0) = 〈H〉V can be easily calculated with less than 1% standard
deviation, δ with decent variational wave functions. As τ increases the Ψ(τ) → Ψ0 and
〈H〉M(τ) decreases, however, the δ increases due to the fermion sign problem.

At small  , few paths are long enough to cross nodal surfaces and the 
variance is small.  
As  increases, many paths cross nodal surfaces, the variance 
increases and the average value of  decreases.

τ

τ
𝒟



''contrained-path'' method: to discard those configuraPons that, in future generaPons, will 
contribute only noise to expectaPon values. 

• If we knew the exact ground state, we could discard any walker for which  
where a sum over spin-isospin states is implied. 

• The sum of these discarded configuraPons can be wrijen as a state , which has zero overlap 
with the ground state. 

• Disregarding  is jusPfied because it only contains excited-states components and should decay 
away as . 

• However, in general, the exact ground state is not known, and the constraint is approximately 
imposed using  in place of : 

Ψ†
0(Ri)Ψ(τ, Ri) = 0

|Ψd⟩

|Ψd⟩
τ → ∞

ΨT Ψ0 ⟨ΨT |Ψd⟩ = 0

• GFMC trial wave funcPon is a vector in spin-isospin space, and there are no coordinates for which all 
the spin-isospin amplitudes will vanish: the overlap  is complex and depends on the 
parPcular sampled order .

Ψ†
T, p(Ri)Ψ(τ, Ri)

p



• To circumvent these difficulPes, we define the overlap  and introduce 

a probability for discarding a configuraPon in terms of the raPo  where

OT, p = ℜ[Ψ†
T, p(Ri)Ψ(τ, Ri)]

OT, p/Ip

P [ †

T, p(Ri), (⌧,Ri)] =

8
>><

>>:

0 O/I > ↵c
↵C�O/I
↵c��c

↵c > O/I > �c

1 O/I < �c

• According to this algorithm configuraPons with  less than  are always discarded, configuraPons 
with  greater than  are never discarded, and there is a linear interpolaPon in between.  

• The constants  and  are adjusted such that the average of the overlap  is zero within 
staPsPcal errors. 

O/I βc
O/I αc

αc βc OT, p/Ip

• In a few cases the constrained propagaPon converges to the wrong energy (either above or below the 
correct energy). Therefore, a small number,  to , of unconstrained steps are made before 
evaluaPng expectaPon values. These few unconstrained steps appear to be sufficient to remove the bias 
introduced by the constraint but do not greatly increase the staPsPcal error.

nu = 10 80



Auxiliary field diffusion Monte Carlo

• Over the last two decades, the auxiliary field diffusion Monte Carlo method has become a mainstay for 
studying medium mass atomic nuclei and infinite neutron majer.

• The AFDMC overcomes the exponenPal scaling with the number of nucleons of the GFMC by:

• The GFMC method works very well for calculaPng the low lying states of nuclei up to . Its major 
limitaPon is that the computaPonal costs scale exponenPally with the number of parPcles, because of 
the full summaPons of the spin-isospin states.

12C

|χis χit⟩ → |S⟩ ≡ |s1⟩ ⊗ |s2⟩ ⊗ … ⊗ |sA⟩ , |si⟩ = ai,↑p | ↑ p⟩ + ai,↓p | ↓ p⟩ + ai,↑n | ↑ n⟩ + ai,↓n | ↓ n⟩

1. using a spin-isospin basis given by the outer product of single-nucleon spinors

 where the state vector is fully specified by a set of  complex coefficients.4A
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If using the standard DMC algorithm, the imaginary- Pme propagator generates a sum of single parPcles wave 
funcPons at each Pme step. The number of these funcPons will grows very quickly during the imaginary 
Pme evoluPon, destroying the gain in computaPonal Pme obtained using a smaller mulPcomponent 
trial wave funcPon.  



‣ The Jastrow component of  is also simpler: |ΨT⟩ |ΦJ⟩ = ∏
i<j

f c
ij ∏

i<j<k

f c
ijk |ΦA(Jπ, Jz, Tz)⟩ ,

‣ The mean-field component is modeled by a sum of Slater determinants,

⟨X |Φ(Jπ, Jz, Tz)⟩ = ∑
n

cn ∑
JJz

CJJz
𝒜[ ϕα1

(x1)…ϕαA
(xA) ]

JJz

-   with  represenPng both the posiPon  and the spin-
isospin coordinates  of the  nucleons, 

-  the determinants are coupled with Clebsch-Gordan coefficients  in order to reproduce the 
total angular momentum, total isospin, and parity, 

-  the single-parPcle orbitals are given by 

X = {x1, …, xA} xi ≡ {ri, si} R = r1, …, rA
S = s1, …, sA A

CJJz

ϕα(xi) = Rnl(ri) Yllz( ̂ri) χssz
(σ) χttz(τ)

2. a simpler trial wave funcPon contains a linearized version of spin/isospin-dependent two-body 

correlaPons |ΨT⟩ = (1 − ∑
i<j

Fij − ∑
i<j<k

Fijk) |ΦJ⟩

• The AFDMC overcomes the exponenPal scaling with the number of nucleons of the GFMC by:



Imaginary short-Pme propagaPon

• Small steps as in the GFMC but now the generalized coordinate  is used instead of  and the spin-
isospin degrees of freedom are also sampled.

X R

• The AFDMC wave funcPon at imaginary Pme  can be wrijen in an integral form analogous to the 
GFMC one

τ + δτ

• Using the Trojer decomposiPon of

• In order to preserve the single-parPcle representaPon, the short-Pme propagator is linearized uPlizing 
the Hubbard-Stratonovich transformaPon

e−λ𝒪2δτ/2 =
1

2π ∫
∞

−∞
dx e−x2/2 ex −λδτ 𝒪 ,

where  are the auxiliary fields and and  can be any type of operator included in the propagator.x 𝒪

Ψ(τ + δτ, Xi+1) = ∑
Si

∫ dRiGδτ(Xi+1, Xi)Ψ(τ, Xi)

Gδτ(Xi+1, Xi) = G0
δτ(Ri+1, Ri)⟨Si+1 |e−(V(Ri+1)/2+V(Ri)/2−ET)δτ |Si⟩ + o(δτ3)



NOTE: Hubbard-Stratonovich transformaPon

• The first six terms defining the  potenPal can be conveniently separated in a spin/isospin-dependent 
 and spin/isospin-independent  contribuPons. If we consider  (neutron systems):

NN
VSD VSI τi ⋅ τj = 1

VSD =
1
2 ∑

iαjβ

Aiα,jβ σα
i σβ

j =
1
2

3A

∑
n=1

𝒪2
n λn ,

‣  are defined as  with  and   are the eigenvalues and eigenvectors of 

the matrix 

On 𝒪n = ∑
i,α

σα
i ψn

iα λn ψn
iα

A

• Applying the exponenPal of the spin-dependent terms of the  interacPon amounts to rotaPng the 
spin-isospin states of nucleons

NN

e−V(Ri)δτ/2 |Si⟩ ∼ ∏
n

1

2π ∫ dxne−x2
n /2exn −λnδτ On |Si⟩

• The imaginary-Pme propagaPon is performed by sampling the auxiliary fields  from the Gaussian 
probability distribuPon 

x̄n

|Si+1⟩ ∼ ∏
n

ex̄n −λδτ On |Si⟩


