Theory
Alliance

# Nuclear interactions and quantum Monte Carlo methods 

Maria Piarulli-Washington University, St. Louis

July 11-13, 2022

## Lecture 3: What can we calculate?

## Many-body Nuclear Interactions

Many-body Nuclear Hamiltonian
$H=\sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j=1}^{A} \overbrace{v_{i j}}^{\text {theexp }}+\sum_{i<j<k=1}^{A} \overbrace{V_{i j k}}^{\text {thtexp }}+\ldots$
one-body two-body (NN) three-body (3N)

- Accurate understanding of the interactions/correlations between nucleons in pairs, triplets,.. ( $v_{i j}$ and $V_{i j k}$ are the two- and three-nucleon forces)
- Operators constrained by experimental data; fitted parameters encode underlying QCD dynamics
long-range $r \sim m_{\pi}^{-1}$ : pion-exchange intermediate range $r \sim\left(2 m_{\pi}\right)^{-1}$ : ex. twopion exchange short-range: ex. contact terms

In our Quantum Monte Carlo calculations we use:

- AV18+UIX; AV18+IL7 phenomenological models

Wiringa, Stoks, Schiavilla PRC 51, 38 (1995); J. Carlson et al. NP A401, 59 (1983); S. Pieper et al. PRC 64, 014001 (2001)

- chiral $\pi N \Delta$ N3LO+N2LO Norfolk models

Binding energies of light nuclei


- Studied 37 different nuclear states in $A \sim 4-12$ nuclei. Comparison between the phenomenological AV18+IL7 model and experiment.
- The agreement with experiment is good for both Hamiltonians: absolute binding energies very close to experiment, and excited states reproducing the observed ordering, indicating reasonable one-body spin orbit splittings.

Charge radii of light nuclei


- Charge radii with respect to experimental data (GFMC for NV2+3-la and AFDMC for GT+E $\tau-1.0)$
- Overall agreement with the experimental data for both models
- For NV2+3-Ia, 9Li charge radius underpredicted, 12C slightly overestimated
- For GT+E $\tau$-1.0, 6Li charge radius underpredicted (issue with AFDMC w.f.)
$\left\langle r_{\mathrm{ch}}^{2}\right\rangle=\left\langle r_{\mathrm{pt}}^{2}\right\rangle+\left\langle R_{p}^{2}\right\rangle+\frac{A-Z}{Z}\left\langle R_{n}^{2}\right\rangle+\frac{3 \hbar^{2}}{4 M_{p}^{2} c^{2}}+\left\langle r_{\mathrm{so}}^{2}\right\rangle$
point-nucleon radius
proton radius $=0.770(9) \mathrm{fm}^{2}$
neutron radius $=-0.116(2) \mathrm{fm}^{2}$
Darwin-Foldy correction $\approx 0.033 \mathrm{fm}^{2}$
spin-orbit correction
point-nucleon radius $\left\langle r_{N}^{2}\right\rangle=\frac{1}{\mathcal{N}}\langle\Psi| \sum_{i} \mathscr{P}_{N_{i}}\left|\mathbf{r}_{i}\right|^{2}|\Psi\rangle$
${ }^{-} \mathbf{r}_{i}$ is the intrinsic nucleon coordinate
- $\mathcal{N}$ is the number of protons or neutrons,
, $\mathscr{P}_{N_{i}}=\frac{1 \pm \tau_{z_{i}}}{2}$


## Single-nucleon densities

- In QMC methods, single-nucleon densities are calculated as: $\rho_{N}(r)=\frac{1}{4 \pi r^{2}}\langle\Psi| \sum_{i} \mathcal{P}_{N_{i}} \delta\left(r-\left|\mathbf{r}_{\mathbf{i}}-\mathbf{R}_{\mathrm{cm}}\right|\right)|\Psi\rangle$

- For symmetric nuclei $N=Z$ nuclei, proton and neutron densities are the same.
- s-shell nuclei ( $\mathrm{A} \leq 4$ ) exhibit large peaks at small separation, while the p-shell nuclei (A $\geq 6$ ) are much reduced at small r and more spread out: due to cluster structure of these light p-shell nuclei puts the center of mass of these nuclei in between clusters and thus reduces the central density.
- Densities are not observables but single-nucleon density can be related to longitudinal (charge) form factor physical quantity experimentally accessible via electron-nucleon scattering processes


## Charge form factors in $A=6$ and $A=12$



The charge form factor can be expressed as the ground-state expectation value of the one-body charge operator, which, ignoring small spin-orbit contributions in the one-body current, results in the following expression:

$$
F_{L}(q)=\frac{1}{Z} \frac{G_{E}^{p}\left(Q_{\mathrm{el}}^{2}\right) \tilde{\rho}_{p}(q)+G_{E}^{n}\left(Q_{\mathrm{el}}^{2}\right) \tilde{\rho}_{n}(q)}{\sqrt{1+Q_{\mathrm{el}}^{2} /\left(4 m_{N}^{2}\right)}}
$$

$$
\begin{aligned}
& \tilde{\rho}_{N}(q) \text { : the Fourier transform of } \rho_{N}(r) \\
& Q_{\mathrm{el}}^{2}=\mathrm{q}^{2}-\omega_{\mathrm{el}}^{2} \quad \omega_{\mathrm{el}}=\sqrt{q^{2}+m_{A}^{2}}-m_{A} \\
& G_{E}^{N}\left(Q^{2}\right) \text { : electric nucleonic form factor }
\end{aligned}
$$

## Nuclear structure: two-nucleon densities

- In QMC methods, two-nucleon densities are calculated as: $\rho_{N N}(r)=\frac{1}{4 \pi r^{2}}\langle\Psi| \sum_{i<j} \mathcal{P}_{N_{i}} P_{N_{j}} \delta\left(r-\left|\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}\right|\right)|\Psi\rangle$


- Within a fixed interaction model, $\rho_{\mathrm{NN}}(r)$ at $r \lesssim 1.5 \mathrm{fm}$ for various nuclei exhibit a similar behavior: cooperation of the shortrange repulsion and the intermediate-range tensor attraction of the NN interaction, with the tensor force being responsible of the large overshooting at $r \sim 1.0 \mathrm{fm}$ between a $n p$ pair compared to a $p p$ pair.
- While the short-distance behavior is the same for all nuclei, it differs for each interaction. Indeed, the probability of finding two nucleons at short distances is finite for the "soft" NV2+3-la and NV2+3-la* chiral models, but approaches to zero as we progress from the "hard" local chiral interaction NV2+3-IIb* to the "hardest" phenomenological AV18+UX.


## Nuclear structure: two-nucleon densities

- The probability of finding two nucleons in a nucleus with relative momentum $\mathbf{q}$ and total-center-of-mass momentum $\mathbf{Q}$ in a spin-isospin projection

$$
\begin{aligned}
\rho_{S T}(\mathbf{q}, \mathbf{Q})= & \int d \mathbf{r}_{1}^{\prime} d \mathbf{r}_{1} d \mathbf{r}_{2}^{\prime} d \mathbf{r}_{2} d \mathbf{r}_{3} \cdots d \mathbf{r}_{A} \psi_{J M_{J}}^{\dagger}\left(\mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{A}\right) e^{-i \mathbf{q} \cdot\left(\mathbf{r}_{12}-\mathbf{r}_{12}^{\prime}\right)} \\
& \times e^{-i \mathbf{Q} \cdot\left(\mathbf{R}_{12}-\mathbf{R}_{12}^{\prime}\right)} P_{S T}(12) \psi_{J M_{J}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{A}\right)
\end{aligned}
$$

The total normalization is: $N_{S T}=\int \frac{d \mathbf{q}}{(2 \pi)^{3}} \frac{d \mathbf{Q}}{(2 \pi)^{3}} \rho_{S T}(\mathbf{q}, \mathbf{Q})$


- In 12C both Hamiltonian exhibit the large $p n / p p$ ratio around $q=2 \mathrm{fm}^{-1}$ for small $Q$, which gradually reduces as $Q$ increases. They also show the high-momentum tail in $q$, but it decays more rapidly with increasing $q$ for the "soft" chiral force.

Nuclear structure: two-nucleon momentum distribution


- Tables and figures that tabulate the single-nucleon momentum distribution (including proton and neutron spin momentum distribution) and two-nucleon momentum distribution (including pair distributions in different combinations of ST) will be available online
- A new capability in the VMC code: constraint in the momentum distribution according to pair separation distance

Dense matter equation of state of neutron matter



Constraints:
At low density from nuclear theory and experiment
At very high density from pQCD
No robust constraint ay intermediate densities
from nuclear physics

## Dense matter equation of state of neutron matter

- The EoS of pure neutron matter (PNM): neutrons stars

- Compact objects: R ~ 10km,
- Composed predominantly of neutrons between the inner crust and the outer core
- NS from gravitational collapse of a massive star after a supernova explosion



Constraints:
At low density from nuclear theory and experiment At very high density from pQCD

No robust constraint ay intermediate densities from nuclear physics

## Neutron matter with realistic NN+3N potentials

- Benchmark calculations between BHF, FHNC/SOC, AFDMC-UP for both the AV18 and chiral-EFT interactions

- AFDMC-UC, BHF, FHNC/SOC are very close to each other up to $\rho=\rho_{0}$ ( $\sim 1 \mathrm{MeV}$ )
- FHNC/SOC is below AFDMC and BHF at higher density; due to limited three-body terms into the cluster expansion $\rho=2 \rho_{0}(\sim 6 \mathrm{MeV})$
- Model dependence of the EOS at three-body level $\rho=2 \rho_{0}(\sim 16 \mathrm{MeV})$
- The exp error on the 3 H beta decays in the NV2+3s* (numbers in parenthesis) is not propagated yet



MP et al. Phys. Rev. C 101, 045801 (2020)
Lovato, MP et al. arxiv 2202.10293 (2022)

## Many-body Nuclear Electroweak Currents

Electroweak structure and reactions:

one-body

two-body

- Accurate understanding of the electroweak interactions of external probes with nucleons, correlated nucleon-pairs,...
- Electroweak form factors
- Magnetic moments and radii
- Electroweak Response functions
- Radiative/weak captures
- G.T. matrix elements involved in beta decays
$\qquad$

$$
\rho=\sum_{i=1}^{\begin{array}{c}
\text { Nuclear charge operator } \\
A
\end{array} \rho_{i}+\sum_{i<j} \rho_{i j}+\ldots .}
$$

- Two-body currents are a manifestation of two-body correlations
- Electromagnetic two-body currents are required to satisfy current conservation

$$
\mathbf{q} \cdot \mathbf{j}=[H, \rho]=\left[t_{i}+v_{i j}+V_{i j k}, \rho\right]
$$

$$
\mathbf{j}=\sum_{i=1}^{\text {Nuclear vector operator }} \mathbf{j}_{i}+\sum_{i<j} \mathbf{j}_{i j}+\ldots
$$

- Meson exchange currents: R. Schiavilla et al., PRC 45, 2628 (1992), Marcucci et al. PRC 72, 014001 (2005), L. Marcucci et al., PRC 78, 065501 (2008)
- Chiral EFT currents: Park et al. NPA 596, 515 (1996); Pastore et al. PRC 78, 064002 (2008), PRC 80, 034004 (2009); Piarulli et al. PRC 87, 014006 (2013), Baroni et al. PRC 93, 015501 (2016); Phillips et al. PRC 72, 014006 (2005), Kölling et al. PRC 80, 045502 (2009), PRC 84, 054008, PRC 86, 047001 (2012); Krebs et al., Ann. Phys. 378, 317 (2017)


## - GFMC calculations using AV18/IL7 (rather then chiral) and EM $\chi$ EFT currents - hybrid calculation



Electromagnetic data are explained when two-body correlations and currents are accounted for!

## Single-Beta decay matrix elements

- Beta decay occurs when, in a nucleus with too many protons or too many neutrons, one of the protons or neutrons is transformed into the other.

$$
(Z, N) \rightarrow(Z+1, N-1)+e+\bar{v}_{e}
$$




Baroni et al. PRC 93, 015501 (2016) LO
(a)
(b)

(d)

(c)

(e)

N2LO

N3LO


GFMC calculations using AV18/IL7 (rather then chiral) and axial $\chi$ EFT currents- hybrid calculation


GFMC calculations using chiral and axial $\chi$ EFT

## Neutrinoless Double Beta Decay

In the hypothesis that the $0 v D B D$ is mediated by the exchange of a light neutrino:


Lepton space-phase integral
\& Depends on the Q-value of the decay and the charge of the final state of the nucleus
\%Can be calculated precisely: for most of the emitters of interest

$$
10^{-15}-10^{-16} \mathrm{yr}^{-1}
$$

Nuclear matrix element (NME)
$\%$ Open issues for theorists
\% Spread of about a factor 2-3 in the predicted values for NME for a given isotope
\% Theoretical predictions for these models compared with single beta

Javier Menendez arXiv:1703.08921 (2017)

\% Depends on combination of neutrino masses and oscillation parameters
\% Uncertainties in the parameters extracted by oscillation experiments and cosmology


- OvDBD: decay mode with the emission of two electrons but without the associated neutrinos:

Light-neutrino exchange
Supersymmetric particle exchange
Emission of Majorons (heavy bosons)

- Neutrino physics: Majorana particles


$$
\text { W. Furry, Phys. Rev. } 561134 \text { (1939). }
$$

- Lepton number violation
- B-L number violation: relevant to explain asymmetry matter-antimatter

- Matrix elements for nuclei of experimental interest are currently affected by large uncertainties due to truncation in the model space and partial (or missing) inclusion of many-body effects
- We study neutrinoless double beta decay in light nuclei that have been successfully described by ab initio models where correlations and currents can be fully accounted for
- These studies serve as benchmark and to establish the relevance of the various two-body (or more) dynamics inducing the decay


## Neutrinoless double beta matrix elements

- Leading operators in neutrinoless double beta decay are two-body operators - These observables are particularly sensitive to short-range and two-body physics
- Transition densities calculated in momentum space indicate that the momentum transfer in this process is of the order of $\sim 200 \mathrm{MeV}$


Cirigliano et al. PLB769(2017)460, JHEP12(2017)082, PRC97(2018)065501

- Study impact of short-range versus long-range neutrino potential: $C(r)=C_{L}(r)+C_{S}(r) \mid$
- The CIB counter term extracted from potential: $g_{N N}^{\nu}=C_{\mathrm{CIB}}$

$r(\mathrm{fm})$
- $\Delta \mathrm{l}=2$ transitions: orthogonal initial and final-state wave functions
- Feature of all isotopes of experimental interest: 48Ca, 76Ge, 136Xe
- Presence of nodes in the long-range transition densities
- $100 \%$ corrections to $\Delta \mathrm{l}=2$ transitions from: $g_{N N}^{\nu}$
- If similar in heavier nuclei: large impact on neutrino mass extractions

| $A$ | Model | $M_{F}$ | $M_{G T}$ | $M_{T}$ | $M_{\mathrm{L}}$ | $M_{\mathrm{S}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | AV18 | 1.56 | -3.66 | 0.03 | 7.45 | 0.48 |
|  | $\chi$ EFT | 1.62 | -3.85 | 0.03 | 7.82 | 1.15 |
| 12 | AV18 | 0.198 | -0.349 | 0.068 | 0.653 | 0.518 |
|  | $\chi$ EFT | 0.223 | -0.394 | 0.083 | 0.725 | 0.533 |

- Momentum transfer q~100MeV

Weak-interaction Hamiltonian
$H_{W}=\frac{G_{V}}{\sqrt{2}} \int d \mathbf{x} e^{-i \mathbf{k}_{\nu} \cdot \mathbf{x}} \tilde{l}_{\sigma}(\mathbf{x}) j^{\sigma}(\mathbf{x})$

- Validation of vector and axial charges and currents
- For light nuclei, you can approximate the muon as at rest in a Hydrogen-like 1s orbital

$$
\begin{aligned}
\Gamma & \left.\left.=\frac{G_{V}^{2}}{2 \pi} \frac{\left|\psi_{1 s}^{\mathrm{v}}\right|^{2}}{\left(2 J_{i}+1\right)} \frac{E_{\nu}^{* 2}}{\text { recoil }} \sum_{M_{f}, M_{i}}\left|\left\langle J_{f}, M_{f}\right| \rho\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\right| J_{i}, M_{i}\right\rangle\left.\right|^{2}+\left|\left\langle J_{f}, M_{f}\right| \mathbf{j}_{z}\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\right| J_{i}, M_{i}\right\rangle\left.\right|^{2} \\
& \left.+2 \operatorname{Re}\left[\left\langle J_{f}, M_{f}\right| \rho\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\left|J_{i}, M_{i}\right\rangle\left\langle J_{f}, M_{f}\right| \mathbf{j}_{z}\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\left|J_{i}, M_{i}\right\rangle^{*}\right]+\left|\left\langle J_{f}, M_{f}\right| \mathbf{j}_{x}\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\right| J_{i}, M_{i}\right\rangle\left.\right|^{2} \\
& \left.+\left|\left\langle J_{f}, M_{f}\right| \mathbf{j}_{y}\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\right| J_{i}, M_{i}\right\rangle\left.\right|^{2}-2 \operatorname{Im}\left\lceil\left\langle J_{f}, M_{f}\right| \mathbf{j}_{x}\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\left|J_{i}, M_{i}\right\rangle\left\langle J_{f}, M_{f}\right| \mathbf{j}_{y}\left(E_{\nu}^{*} \hat{\mathbf{z}}\right)\left|J_{i}, M_{i}\right\rangle^{*}\right.
\end{aligned}
$$

## Partial Muon Capture Rates with QMC: ${ }^{3} \mathrm{He}\left(\mu^{-}, \nu_{\mu}\right)^{3} \mathrm{H}$

Momentum transfer $q \sim 100 \mathrm{MeV}$

- QMC rate for ${ }^{3} \mathrm{He}\left(1 / 2^{+} ; 1 / 2\right) \rightarrow{ }^{3} \mathrm{H}\left(1 / 2^{+} ; 1 / 2\right)$
- $\Gamma_{\mathrm{VMC}}=1512 \mathrm{~s}^{-1} \pm 32 \mathrm{~s}^{-1}$
- $\Gamma_{\text {GFMC }}=1476 \mathrm{~s}^{-1} \pm 43 \mathrm{~s}^{-1}$
- $\Gamma_{\text {expt }}=1496.0 \mathrm{~s}^{-1} \pm 4.0 \mathrm{~s}^{-1}$
[Ackerbauer et al. Phys. Lett. B417 (1998)]

- The inclusion of 2b electroweak currents increase the rate by about $9 \%$ to $16 \%$.
- uncertainty estimates:
- Cutoff: $8 \mathrm{~s}^{-1}$ (0.5\%)
- Energy range of fit: $11 \mathrm{~s}^{-1}(0.7 \%)$
- Three-body fit: $27 \mathrm{~s}^{-1}$ (1.8\%)

- Systematic: $9 \mathrm{~s}^{-1}$ (0.6\%)


## Lepton-Nucleus Scattering: Inclusive Processes

- Inclusive lepton scattering off a the nucleus: five response functions

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \epsilon_{l}^{\mathrm{d}} \Omega_{l}} \propto\left[v_{00} R_{00}+v_{z z} R_{z z}-v_{0 z} R_{0 z}+v_{x x} R_{x x} \mp v_{x y} R_{x y}\right]
$$



- For the EM case only two response functions survive: longitudinal $R_{00}$ and transverse $R_{x x}$ which are obtained from the charge and transverse current operators $\left.R_{\alpha}(q, \omega)=\sum_{f} \delta\left(\omega+E_{0}-E_{f}\right)\left|\langle f| O_{\alpha}(\mathbf{q})\right| 0\right\rangle\left.\right|^{2} \quad \begin{aligned} & O_{L}=\rho \\ & O_{T}=j\end{aligned}$
Euclidean response: GFMC calculations
Inversion back to obtain the response by maximum entropy methods

$$
\int_{0}^{\infty} \mathrm{d} \omega \mathrm{e}^{-\tau \omega} R_{\alpha \beta}(q, \omega)=\langle i| j_{\alpha}^{\dagger}(\mathbf{q}) \mathrm{e}^{-\tau\left(H-E_{i}\right)} j_{\beta}(\mathbf{q})|i\rangle
$$

Longitudinal


Transverse


[^0]
## Lepton-Nucleus Scattering: Exclusive Processes

## Short-Time-Approximation:

- Based on factorization
- Response functions are given by the scattering from pairs of fully interacting nucleons that propagate into a correlated pair of nucleons
- Allows to retain both two-body correlations and currents at the vertex
 Describe electroweak scattering for A>12 without losing two-body physics
- Incorporate relativistic effects
- Provides "more" exclusive information in terms of nucleon-pair kinematics via the Response Densities

Response Functions: integral over real time

$$
R_{\alpha \beta}(\omega, \mathbf{q})=\int \frac{d t}{2 \pi} e^{i\left(\omega+E_{0}\right) t}\langle 0| J_{\alpha}^{\dagger}(\mathbf{q}) e^{-i H t} J_{\beta}(\mathbf{q})|0\rangle
$$

The two main assumption underlying the STA are:

1. Only the one- and two-body terms are kept in the current-current correlator

$$
j^{\dagger}(i) e^{-i H t} j(i)+j^{\dagger}(i) e^{-i H t} j(j)+j^{\dagger}(i) e^{-i H t} j(i j)+j^{\dagger}(i j) e^{-i H t} j(i j)
$$

2. In the particle propagator the Hamiltonian is rewritten as

$$
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+\sum_{i j} v_{i j}
$$

## Response Densities:

$$
R(q, \omega)=\int_{0}^{\infty} d e d E_{\mathrm{cm}} \delta\left(\omega+E_{0}-e-E_{\mathrm{cm}}\right) D\left(e, E_{\mathrm{cm}}\right)
$$

$E_{\mathrm{cm}}$ and $e$ are the CM and relative energy of the struck nucleon pair

## Transverse Response Density: e-4He scattering



Pastore et al. PRC101(2020)044612

## Cross sections ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ : benchmark between GFMC and STA




## Response densities for ${ }^{12} C$

Longitudinal Density $q=570 \mathrm{MeV}$


Transverse Density $q=570 \mathrm{MeV}$


Preliminary results for longitudinal and transverse response densities in ${ }^{12} C$

## Summary: Workflow for the microscopic model nuclear theory



THANK YOU!!!


[^0]:    Lovato el al. PRL 112, 182592 (2014) Lovato el al. PRC 91, 062501 (2015) Lovato el al. PRL 117, 082501 (2016)

