Quantum Simulations - I

Alessandro Roggero

NNP Summer School
Trento Institute for Fundamental Physics and Applications

MIT - 18 July, 2022

Introduction: the nuclear many-body problem

Bertsch, Dean, Nazarewicz (2007)

$$
\mathcal{L}_{Q C D}=\sum_{f} \bar{\Psi}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) \Psi_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

- in principle can derive everything from here

Effective theory for nuclear systems

$$
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i, j} V_{i j}+\frac{1}{6} \sum_{i, j, k} W_{i j k}+\cdots
$$

- easier to deal with than the QCD lagragian
- describes correctly low energy physics
- non-perturbative \rightarrow still very challenging

Introduction: the nuclear many-body problem

Bertsch, Dean, Nazarewicz (2007)

$$
\mathcal{L}_{Q C D}=\sum_{f} \bar{\Psi}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) \Psi_{f}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

- in principle can derive everything from here

Effective theory for nuclear systems

$$
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i, j} V_{i j}+\frac{1}{6} \sum_{i, j, k} W_{i j k}+\cdots
$$

- easier to deal with than the QCD lagragian
- describes correctly low energy physics
- non-perturbative \rightarrow still very challenging

Two main goals:

- energy spectrum (eigenvalues)
- scattering cross sections/response to external probes (eigenvectors)

Why is this difficult?

GOAL: compute the ground state energy with error at most ϵ

$$
H=\sum_{i} \frac{p^{2}}{2 m}+\frac{1}{2} \sum_{i, j} V_{i j}+\frac{1}{6} \sum_{i, j, k} W_{i j k}+\cdots
$$

PROBLEM: large dimension of the Hilbert space $N=\operatorname{dim}(\mathcal{H})>4^{A}$

Classical computational cost

- Full diagonalization: $O\left(N^{3}\right)$
- sparse Lanczos*: $O\left(d N \frac{\log (N)}{\sqrt{\epsilon}}\right)$
- MC no sign prob.: $O\left(\frac{\log (N)^{\alpha}}{\epsilon^{2}}\right)$
- MC with sign prob.: $O\left(\frac{N^{\beta}}{\epsilon^{2}}\right)$
*see eg. Kuczynski \& Wozniakowski (1989)

What is a Quantum Computer?

A Quantum Computer is a controllable quantum many-body system that allows to enact unitary transformations on an initial state ρ_{0}

$$
\rho_{0} \rightarrow U \rho_{0} U^{\dagger}
$$

n degrees of freedom so $\rho \in \mathcal{H}^{\otimes n}$

What is a Quantum Computer?

A Quantum Computer is a controllable quantum many-body system that allows to enact unitary transformations on an initial state ρ_{0}

$$
\rho_{0} \rightarrow U \rho_{0} U^{\dagger}
$$

n degrees of freedom so $\rho \in \mathcal{H}^{\otimes n}$
In a Quantum Simulation we want to use this freedom to describe the time-evolution of a closed system

$$
\rho(t) \rightarrow U(t) \rho_{0} U(t)^{\dagger}
$$

described by some Hamiltonian

$$
U(t)=\exp (i t H)
$$

Black box model for a quantum computer

Box contains n qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement \mathcal{M}
- quantum operations G_{k}

Black box model for a quantum computer

Box contains n qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement \mathcal{M}
- quantum operations G_{k}

Solovay-Kitaev Theorem
We can build a universal black box with only a finite number of buttons

Black box model for a quantum computer

Box contains n qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement \mathcal{M}
- quantum operations G_{k}

Solovay-Kitaev Theorem
We can build a universal black box with only a finite number of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

Black box model for a quantum computer

Box contains n qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement \mathcal{M}
- quantum operations G_{k}

Solovay-Kitaev Theorem
We can build a universal black box with only a finite number of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians
(1) discretize the physical problem

$$
|\Psi(0)\rangle \rightarrow|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle
$$

Black box model for a quantum computer

Box contains n qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement \mathcal{M}
- quantum operations G_{k}

Solovay-Kitaev Theorem

We can build a universal black box with only a finite number of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians
(1) discretize the physical problem
(2) map physical states to bb states

$$
|\Psi(0)\rangle \rightarrow|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle
$$

Black box model for a quantum computer

Box contains n qubits (2-level sys.) together with a set of buttons

- initial state preparation ρ
- projective measurement \mathcal{M}
- quantum operations G_{k}

Solovay-Kitaev Theorem

We can build a universal black box with only a finite number of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians
(1) discretize the physical problem
(2) map physical states to bb states
(3) push correct button sequence

Can we always do this?

Any unitary operation can be thought as the time evolution operator for some (Hermitian) Hamiltonian

$$
U \quad \leftrightarrow \quad e^{i H}
$$

A simple counting argument shows that for a fixed choice of universal buttons (quantum gates) there are unitary operations on n qubits which will require $O\left(2^{n}\right)$ operations

We can find Hamiltonians whose time evolution cannot be simulated efficiently

Efficient Hamiltonian Simulation

Hamiltonians encountered in physics have usually structure, like locality

$$
\begin{aligned}
& H_{I s i n g}^{1 D}=J \sum_{i=1}^{N} Z_{i} Z_{i+1}+h \sum_{i=1}^{N} X_{i} \\
& H_{\text {Heis }}^{1 D}=J \sum_{i=1}^{N} \vec{\sigma}_{i} \cdot \vec{\sigma}_{i+1}
\end{aligned}
$$

$$
\begin{aligned}
H_{\text {Ising }}^{2 D} & =J \sum_{\langle i, j\rangle} Z_{i} Z_{j}+h \sum_{i} X_{i} \\
H_{H e i s}^{2 D} & =J \sum_{\langle i, j\rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j}
\end{aligned}
$$

All these situations are examples of 2-local spin Hamiltonians

Quantum Simulation of k-local Hamiltonians

- locality constraints number of terms appearing in the Hamiltonian
- one can approximate full evolution with products of evolutions

$$
e^{i t(A+B)}=e^{i t A} e^{i t B}+\mathcal{O}\left(t^{2}\|[A, B]\|\right)
$$

- locality constrains how expensive any individual term can be

Quantum Simulation of k-local Hamiltonians

- locality constraints number of terms appearing in the Hamiltonian
- one can approximate full evolution with products of evolutions

$$
e^{i t(A+B)}=e^{i t A} e^{i t B}+\mathcal{O}\left(t^{2}\|[A, B]\|\right)
$$

- locality constrains how expensive any individual term can be S. LLOYD (1996): k-local hamiltonians can be simulated efficiently

Consider a system of n qubits and a k-local Hamiltonian $H=\sum_{j}^{N_{j}} h_{j}$ where each term h_{j} acts on at most $k=\mathcal{O}(1)$ qubits at a time for $N_{j}=\mathcal{O}($ poly $(n))$, then using the Trotter-Suzuki decomposition

$$
\left\|U(\tau)-\prod_{j}^{N_{j}} \exp \left(i \tau h_{j}\right)\right\| \leq C \tau^{2}
$$

we can implement $U(\tau)$ with error ϵ using \mathcal{O} (poly $\left.(\tau, 1 / \epsilon, n) 4^{k}\right)$ gates.

Why is this difficult?

GOAL: compute the ground state energy with error at most ϵ

$$
H=\sum_{i} \frac{p^{2}}{2 m}+\frac{1}{2} \sum_{i, j} V_{i j}+\frac{1}{6} \sum_{i, j, k} W_{i j k}+\cdots
$$

PROBLEM: large dimension of the Hilbert space $N=\operatorname{dim}(\mathcal{H})>4^{A}$

Classical computational cost

- Full diagonalization: $O\left(N^{3}\right)$
- sparse Lanczos*: $O\left(d N \frac{\log (N)}{\sqrt{\epsilon}}\right)$
- MC no sign prob.: $O\left(\frac{\log (N)^{\alpha}}{\epsilon^{2}}\right)$
- MC with sign prob.: $O\left(\frac{N^{\beta}}{\epsilon^{2}}\right)$
*see eg. Kuczynski \& Wozniakowski (1989)

Why quantum computing for nuclear physics?
GOAL: compute the ground state energy with error at most ϵ

$$
H=\sum_{i} \frac{p^{2}}{2 m}+\frac{1}{2} \sum_{i, j} V_{i j}+\frac{1}{6} \sum_{i, j, k} W_{i j k}+\cdots
$$

Quantum Phase Estimation (QPE)

Time evolution can be cheap

- many Hamiltonians such that

$$
|\Psi(t+\tau)\rangle=\exp (i \tau H)|\Psi(t)\rangle
$$

costs only $O\left(\tau \log (N)^{\alpha}\right)$

- QPE uses this to solve our goal in $O\left(\frac{\log (N)^{\gamma}}{\epsilon^{\kappa}}\right)$ for $1 \leq \kappa \leq 3$

IMPORTANT REMARKS:

(1) many repetitions required, need stable quantum processor for only $O\left(\frac{\log (N)^{\gamma}}{\epsilon}\right)$ operations
(2) this is not always possible
(3) if it is, dynamics is as easy/complicated as static

General scheme for many-body quantum simulations

- Discretize physical problem on finite Hilbert space
- Encode discrete problem into spin problem
- Prepare an encoded low energy state
- Manipulate state, e.g. evolve under unitary time evolution
- Measure properties of final state

General scheme for many-body quantum simulations

- Discretize physical problem on finite Hilbert space
- Encode discrete problem into spin problem
- Prepare an encoded low energy state
- Manipulate state, e.g. evolve under unitary time evolution
- Measure properties of final state
- many options for preparing low energy states with a given encoding

Variational State Preparation

Exploit variational principle for the energy to find some reasonable parametrization for the ground-state

$$
E(\vec{\alpha})=\langle\Psi(\vec{\alpha})| H|\Psi(\vec{\alpha})\rangle \geq E_{0}
$$

[^0]Quick introduction to quantum gates

single-qubit gates

$-R_{\hat{n}}(\theta)=\exp \left(i \theta \frac{\hat{n} \cdot \vec{\sigma}}{2}\right)$
$\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=-X$
$\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)=-Y$
$\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=-Z$
$S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)=-5$

two-qubit entangling gate

$$
\begin{aligned}
& \mathrm{CNOT}=\rightleftarrows=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \left|\Phi_{0}\right\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \\
& \left|\Phi_{1}\right\rangle=a|00\rangle+b|01\rangle+c|11\rangle+d|10\rangle
\end{aligned}
$$

EXERCISE: show that $\forall U_{A}, U_{B}$ the output of the circuit above is $|0000\rangle$

Quick introduction to quantum gates

single-qubit gates

$-R_{\hat{n}}(\theta)=\exp \left(i \theta \frac{\hat{n} \cdot \vec{\sigma}}{2}\right)$
$\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=-X$
$\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)=-Y$
$\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=-Z$
$S=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)=-5$

two-qubit entangling gate

$$
\begin{aligned}
& \text { CNOT }=\rightleftarrows=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \left|\Phi_{0}\right\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \\
& \left|\Phi_{1}\right\rangle=a|00\rangle+b|01\rangle+c|11\rangle+d|10\rangle
\end{aligned}
$$

EXERCISE: show that $\forall U_{A}, U_{B}$ the output of the circuit above is $|0000\rangle$

Quick introduction to quantum gates II

Hadamard Gate

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- rotates between Z and X basis

$$
\left.\begin{array}{l}
H|0\rangle=|+\rangle \\
H|1\rangle=|-\rangle
\end{array}\right\} \quad X| \pm\rangle= \pm| \pm\rangle
$$

- generates uniform superposition

$$
\begin{gathered}
|0\rangle-H \\
|0\rangle-H \\
|0\rangle-H \\
H^{\otimes 3}|0\rangle=\frac{1}{\sqrt{2^{3}}} \sum_{k=0}^{2^{3}-1}|k\rangle
\end{gathered}
$$

Barenco et al. (1995)

Controlled CNOT: Toffoli

* see eg. Nielsen \& Chuang

Measuring an observable: single qubit case
Computational basis is eigenbasis of Z so that, if $|\Psi\rangle=U_{\Psi}|0\rangle$, we have

$$
\langle\Psi| Z|\Psi\rangle=|\langle 0 \mid \Psi\rangle|^{2}-|\langle 1 \mid \Psi\rangle|^{2} \equiv|0\rangle-U_{\Psi}-\text { - }
$$

Measuring an observable: single qubit case
Computational basis is eigenbasis of Z so that, if $|\Psi\rangle=U_{\Psi}|0\rangle$, we have

$$
\langle\Psi| Z|\Psi\rangle=|\langle 0 \mid \Psi\rangle|^{2}-|\langle 1 \mid \Psi\rangle|^{2} \equiv|0\rangle-U_{\Psi}-\boldsymbol{\alpha}
$$

We now need to repeat calculation M times to estimate the probabilities

$$
P(0)=|\langle 0 \mid \Psi\rangle|^{2} \sim \frac{\sum_{k} \delta_{s_{k}, 0}}{M} \quad \operatorname{Var}[P(0)] \sim \frac{v_{0}}{M} \longrightarrow 0
$$

Measuring an observable: single qubit case

Computational basis is eigenbasis of Z so that, if $|\Psi\rangle=U_{\Psi}|0\rangle$, we have

$$
\langle\Psi| Z|\Psi\rangle=|\langle 0 \mid \Psi\rangle|^{2}-|\langle 1 \mid \Psi\rangle|^{2} \equiv|0\rangle-U_{\Psi}-\text { 人 }
$$

We now need to repeat calculation M times to estimate the probabilities

$$
P(0)=|\langle 0 \mid \Psi\rangle|^{2} \sim \frac{\sum_{k} \delta_{s_{k}, 0}}{M} \quad \operatorname{Var}[P(0)] \sim \frac{v_{0}}{M} \longrightarrow 0
$$

Other expectation values accessible by basis transformation

$$
|0\rangle-U_{\Psi}-\sqrt[V_{X}]{ }-\varnothing
$$

$$
|0\rangle-U_{\Psi}-\sqrt{V_{Y}}-\searrow
$$

- for X we can use $X=V_{X} Z V_{X}^{\dagger}$ where V_{X} is the Hadamard

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- for Y we can use $Y=S X S^{\dagger}$ so that $V_{Y}=S V_{X}=S H$

Measuring an observable: the Pauli group

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$
O=\sum_{k=1}^{N_{K}} c_{k} P_{k} \quad P_{k} \in\left\{(\mathbb{1}, X, Y, Z)^{\otimes n}\right\}
$$

we want to measure the expectation value $\langle\Psi| O|\Psi\rangle$ [McClean et al. (2014)].

Example: $X_{0} Y_{1} Z_{2} Z_{3} Y_{4}$

- $\forall k$ perform M experiments to get $\left\langle P_{k}\right\rangle$ with

$$
\operatorname{Var}\left[P_{k}\right] \sim \frac{\left\langle P_{k}^{2}\right\rangle-\left\langle P_{k}\right\rangle^{2}}{M}=\frac{1-\left\langle P_{k}\right\rangle^{2}}{M}
$$

- we can now evaluate $\langle O\rangle$ with variance

$$
\begin{aligned}
& \operatorname{Var}[O]=\sum_{k=1}^{N_{K}}\left|c_{k}\right|^{2} \operatorname{Var}\left[P_{k}\right] \\
& \Rightarrow \text { total error } \propto \sqrt{N_{K} / M}
\end{aligned}
$$

Measuring an observable: the Pauli group

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$
O=\sum_{k=1}^{N_{K}} c_{k} P_{k} \quad P_{k} \in\left\{(\mathbb{1}, X, Y, Z)^{\otimes n}\right\}
$$

we want to measure the expectation value $\langle\Psi| O|\Psi\rangle$ [McClean et al. (2014)].
Example: $X_{0} Y_{1} Z_{2} Z_{3} Y_{4}$

Measuring an observable: Hadamard test

Kitaev (1995)

When $\theta=0$ we have:

$$
\begin{aligned}
& \text { (1) }\left|\Phi_{0}\right\rangle=|0\rangle \otimes|\Psi\rangle \\
& \text { (2) }\left|\Phi_{1}\right\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \otimes|\Psi\rangle \\
& \text { (3 }\left|\Phi_{2}\right\rangle=\frac{|0\rangle \otimes|\Psi\rangle}{\sqrt{2}}+\frac{|1\rangle \otimes U|\Psi\rangle}{\sqrt{2}} \\
& \text { (1) }\left|\Phi_{3}\right\rangle=\frac{|0\rangle \otimes(\mathbb{1}+U)|\Psi\rangle}{2}+\frac{|1\rangle \otimes(\mathbb{1}-U)|\Psi\rangle}{2}
\end{aligned}
$$

Result of ancilla measurement

$$
\langle Z\rangle_{a}=\frac{\langle\Psi|\left(U+U^{\dagger}\right)|\Psi\rangle}{2}=\mathcal{R}\langle\Psi| U|\Psi\rangle
$$

EXERCISE: find the proper angle θ needed to measure the imaginary part

EXAMPLE: eigenvalue estimation

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle=e^{i 2 \pi \phi}|\phi\rangle$

- for $\theta=0:\langle Z\rangle_{a}=\cos (2 \pi \phi)$

EXAMPLE: eigenvalue estimation

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle=e^{i 2 \pi \phi}|\phi\rangle$

- for $\theta=0:\langle Z\rangle_{a}=\cos (2 \pi \phi)$
- error δ with $M \propto 1 / \delta^{2}$ samples:

$$
\operatorname{Var}\left[Z_{a}\right] \sim \frac{1}{M}
$$

EXAMPLE: eigenvalue estimation

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle=e^{i 2 \pi \phi}|\phi\rangle$

- for $\theta=0:\langle Z\rangle_{a}=\cos (2 \pi \phi)$
- error δ with $M \propto 1 / \delta^{2}$ samples:

$$
\operatorname{Var}\left[Z_{a}\right] \sim \frac{1}{M}
$$

- not enough to separate $(\phi, 1-\phi)$

EXAMPLE: eigenvalue estimation

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle=e^{i 2 \pi \phi}|\phi\rangle$

- for $\theta=0:\langle Z\rangle_{a}=\cos (2 \pi \phi)$
- error δ with $M \propto 1 / \delta^{2}$ samples:

$$
\operatorname{Var}\left[Z_{a}\right] \sim \frac{1}{M}
$$

- not enough to separate $(\phi, 1-\phi)$
- for $\theta=\theta_{e x}:\langle Z\rangle_{a}=\sin (2 \pi \phi)$

EXAMPLE: eigenvalue estimation

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle=e^{i 2 \pi \phi}|\phi\rangle$

- for $\theta=0:\langle Z\rangle_{a}=\cos (2 \pi \phi)$
- error δ with $M \propto 1 / \delta^{2}$ samples:

$$
\operatorname{Var}\left[Z_{a}\right] \sim \frac{1}{M}
$$

- not enough to separate $(\phi, 1-\phi)$
- for $\theta=\theta_{e x}:\langle Z\rangle_{a}=\sin (2 \pi \phi)$

Quantum phase estimation in one slide

GOAL: compute eigenvalue ϕ with error δ using exact eigenvector $|\phi\rangle$

Quantum phase estimation in one slide

GOAL: compute eigenvalue ϕ with error δ using exact eigenvector $|\phi\rangle$

- Hadamard test: one controlled- U operation and $O\left(1 / \delta^{2}\right)$ experiments

Quantum phase estimation in one slide
GOAL: compute eigenvalue ϕ with error δ using exact eigenvector $|\phi\rangle$

- Hadamard test: one controlled- U operation and $O\left(1 / \delta^{2}\right)$ experiments

- Quantum Phase Estimation (QPE) uses $O(1 / \delta)$ controlled- U operations, $O(\log (1 / \delta))$ ancilla qubits and only $O(1)$ experiments

Quantum phase estimation in one slide
GOAL: compute eigenvalue ϕ with error δ using exact eigenvector $|\phi\rangle$

- Hadamard test: one controlled- U operation and $O\left(1 / \delta^{2}\right)$ experiments

- Quantum Phase Estimation (QPE) uses $O(1 / \delta)$ controlled- U operations, $O(\log (1 / \delta))$ ancilla qubits and only $O(1)$ experiments

BONUS: works even if $|\phi\rangle \rightarrow \alpha|\phi\rangle+\beta|\xi\rangle$ with $O\left(1 / \alpha^{2}\right)$ experiments

Filling in the details

The QPE algorithm has 4 main stages
(1) prepare m ancilla in uniform superposition of basis states
(2) apply controlled phases using U^{k} with $k=2^{0}, 2^{1}, \ldots, 2^{m-1}$
(3) perform (inverse) Fourier transorm on ancilla register
(9) measure the ancilla register

Filling in the details: state preparation

(1) prepare m ancilla in uniform superposition of basis states

$$
\begin{aligned}
\left|\Phi_{1}\right\rangle=H^{\otimes m}|0\rangle_{m} & =\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes \cdots \otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \\
& =\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1}|k\rangle
\end{aligned}
$$

BINARY REPRESENTATION: use $|3\rangle$ to indicate $|00011\rangle$

Filling in the details: phase kickback

The state $|\phi\rangle$ is an eigenstate of U with $U|\phi\rangle=\exp (i 2 \pi \phi)|\phi\rangle$
(2) each $\mathrm{c}-U^{k}$ applies a phase $\exp (i 2 \pi k \phi)$ to the $|1\rangle$ state of the ancilla

$$
\begin{aligned}
\left|\Phi_{2}\right\rangle & =\left(\frac{|0\rangle+e^{i 2 \pi \phi}|1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle+e^{i 4 \pi \phi}|1\rangle}{\sqrt{2}} \otimes \cdots \otimes \frac{|0\rangle+e^{i 2^{m-1} \pi \phi}|1\rangle}{\sqrt{2}}\right) \otimes|\phi\rangle \\
& =\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1} \exp (i 2 \pi \phi k)|k\rangle \otimes|\phi\rangle
\end{aligned}
$$

Filling in the details: inverse QFT

Recall that: $Q F T^{\dagger}|k\rangle=\frac{1}{\sqrt{2^{m}}} \sum_{q=0}^{2^{m}-1} \exp \left(-i \frac{2 \pi}{2^{m}} q k\right)|q\rangle$
(3) after an inverse QFT the final state is

$$
\left|\Phi_{3}\right\rangle=Q F T^{\dagger}\left|\Phi_{2}\right\rangle=\frac{1}{2^{m}} \sum_{k=0}^{2^{m}-1} \sum_{q=0}^{2^{m}-1} \exp \left(i 2 \pi k\left(\phi-\frac{q}{2^{m}}\right)\right)|q\rangle \otimes|\phi\rangle
$$

Filling in the details: final measurement

$$
\left|\Phi_{3}\right\rangle=\sum_{q=0}^{2^{m}-1}\left(\frac{1}{2^{m}} \sum_{k=0}^{2^{m}-1} \exp \left(i \frac{2 \pi k}{2^{m}}\left(2^{m} \phi-q\right)\right)\right)|q\rangle \otimes|\phi\rangle
$$

(9) if phase ϕ is a m-bit number we can find $0 \leq p<2^{m}$ s.t. $2^{m} \phi=p$

$$
\left|\Phi_{3}\right\rangle=\sum_{q=0}^{2^{m}-1} \delta_{q, p}|q\rangle \otimes|\phi\rangle=|p\rangle \otimes|\phi\rangle
$$

\Rightarrow exact solution with only 1 measurement!

Final measurement: generic phase

- when $2^{m} \phi$ is not an integer we can sum the term in parenthesis as

$$
\sum_{k=0}^{2^{m}-1} e^{i x k}=\frac{1-e^{i 2^{m} x}}{1-e^{i x}}=\exp \left(i \frac{x}{2}\left(2^{m}-1\right)\right) \frac{\sin \left(2^{m} x / 2\right)}{\sin (x / 2)}
$$

Final measurement: generic phase

- when $2^{m} \phi$ is not an integer we can sum the term in parenthesis as

$$
\sum_{k=0}^{2^{m}-1} e^{i x k}=\frac{1-e^{i 2^{m} x}}{1-e^{i x}}=\exp \left(i \frac{x}{2}\left(2^{m}-1\right)\right) \frac{\sin \left(2^{m} x / 2\right)}{\sin (x / 2)}
$$

- we will measure the ancilla register in $|q\rangle$ with probability

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

where we have defined $M=2^{m}$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example example taken from A. Childs lecture notes (2011)

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example example taken from A. Childs lecture notes (2011)

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example example taken from A. Childs lecture notes (2011)

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase example

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

EXERCISE: show that if $r=\lceil M \phi\rfloor$ then $P(r) \geq 4 / \pi^{2} \approx 0.4$

Final measurement: generic phase II

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

- the best m-bit approximation to ϕ is p / M with $p=\lceil M \phi\rfloor$
- the probabilty of making an error $\delta=(q-p) / M$ is

Final measurement: generic phase II

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

- the best m-bit approximation to ϕ is p / M with $p=\lceil M \phi\rfloor$
- the probabilty of making an error $\delta=(q-p) / M$ is

Final measurement: generic phase II

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

- the best m-bit approximation to ϕ is p / M with $p=\lceil M \phi\rfloor$
- the probabilty of making an error $\delta=(q-p) / M$ is

Final measurement: generic phase II

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

- the best m-bit approximation to ϕ is p / M with $p=\lceil M \phi\rfloor$
- the probabilty of making an error $\delta=(q-p) / M$ is

Final measurement: generic phase II

$$
P(q)=\frac{1}{M^{2}} \frac{\sin ^{2}(M \pi(\phi-q / M))}{\sin ^{2}(\pi(\phi-q / M))}
$$

- the best m-bit approximation to ϕ is p / M with $p=\lceil M \phi\rfloor$
- the probabilty of making an error $\delta=(q-p) / M$ is

Quick recap of QPE for eigenstates

- given an eigenstate $|\phi\rangle$ QPE can provide an estimate for the phase ϕ with precision δ using $M \sim 1 / \delta$ with probability $P>4 / \pi^{2}$

Quick recap of QPE for eigenstates

- given an eigenstate $|\phi\rangle$ QPE can provide an estimate for the phase ϕ with precision δ using $M \sim 1 / \delta$ with probability $P>4 / \pi^{2}$
- this probability can be amplified to $1-\epsilon$ using more ancilla qubits*

$$
m^{\prime}=m+\left\lceil\log \left(\frac{1}{2 \epsilon}+2\right)\right\rceil \quad \Rightarrow \quad M^{\prime} \sim \frac{1}{\delta \epsilon}
$$

*see eg. Nielsen \& Chuang

Quick recap of QPE for eigenstates

- given an eigenstate $|\phi\rangle$ QPE can provide an estimate for the phase ϕ with precision δ using $M \sim 1 / \delta$ with probability $P>4 / \pi^{2}$
- this probability can be amplified to $1-\epsilon$ using more ancilla qubits*

$$
m^{\prime}=m+\left\lceil\log \left(\frac{1}{2 \epsilon}+2\right)\right\rceil \quad \Rightarrow \quad M^{\prime} \sim \frac{1}{\delta \epsilon}
$$

*see eg. Nielsen \& Chuang

- we can also repeat this $O(\log (1 / \eta))$ times and take a majority vote to increase the probability to $1-\eta$ (see Chernoff bound)

Final recap of first day

(1) quantum computers can simulate efficiently the time-evolution operator $U(\tau)=\exp (i \tau H)$ for k-local Hamiltonians

- for target error ϵ this requires $\mathcal{O}\left(\right.$ poly $\left.(n, \tau, 1 / \epsilon) 4^{k}\right)$ gates
(2) if we can prepare an energy eigenstate $|\phi\rangle$ we can use this to measure it's phase with accuracy Δ using a total propagation time $\tau \sim 1 / \Delta$
(3) this might be preferable to directly estimating the energy as an expectation value as this would cost $\mathcal{O}\left(1 / \Delta^{2}\right)$ measurements

EXAMPLE 2: the SWAP test

- State Tomography: reconstruction of state $|\Psi\rangle$ costs $O(N)$ samples
- State Overlap: we can compute $|\langle\Psi \mid \Phi\rangle|^{2}$ using only $O(\log (N))$ gates

EXAMPLE 2: the SWAP test

- State Tomography: reconstruction of state $|\Psi\rangle$ costs $O(N)$ samples
- State Overlap: we can compute $|\langle\Psi \mid \Phi\rangle|^{2}$ using only $O(\log (N))$ gates

The SWAP gate
SWAP $|\Psi\rangle \otimes|\Phi\rangle=|\Phi\rangle \otimes|\Psi\rangle$

2 qubits $\Rightarrow\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

[^0]: see e.g. J.McClean, J. Romero, et.al. (2016), M. Cerezo, A. Arrasmith, R. Babbush, et al. (2021)

