Actual source code: baijfact8.c

  1: /*$Id: baijfact8.c,v 1.4 2001/03/23 23:22:07 balay Exp $*/
  2: /*
  3:     Factorization code for BAIJ format. 
  4: */
 5:  #include src/mat/impls/baij/seq/baij.h
 6:  #include src/vec/vecimpl.h
 7:  #include src/inline/ilu.h

  9: /*
 10:       Version for when blocks are 6 by 6 Using natural ordering
 11: */
 12: #undef __FUNCT__  
 14: int MatLUFactorNumeric_SeqBAIJ_6_NaturalOrdering(Mat A,Mat *B)
 15: {
 16:   Mat         C = *B;
 17:   Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ *)C->data;
 18:   int         ierr,i,j,n = a->mbs,*bi = b->i,*bj = b->j;
 19:   int         *ajtmpold,*ajtmp,nz,row;
 20:   int         *diag_offset = b->diag,*ai=a->i,*aj=a->j,*pj;
 21:   MatScalar   *pv,*v,*rtmp,*pc,*w,*x;
 22:   MatScalar   x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
 23:   MatScalar   x16,x17,x18,x19,x20,x21,x22,x23,x24,x25;
 24:   MatScalar   p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15;
 25:   MatScalar   p16,p17,p18,p19,p20,p21,p22,p23,p24,p25;
 26:   MatScalar   m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15;
 27:   MatScalar   m16,m17,m18,m19,m20,m21,m22,m23,m24,m25;
 28:   MatScalar   p26,p27,p28,p29,p30,p31,p32,p33,p34,p35,p36;
 29:   MatScalar   x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36;
 30:   MatScalar   m26,m27,m28,m29,m30,m31,m32,m33,m34,m35,m36;
 31:   MatScalar   *ba = b->a,*aa = a->a;

 34:   PetscMalloc(36*(n+1)*sizeof(MatScalar),&rtmp);
 35:   for (i=0; i<n; i++) {
 36:     nz    = bi[i+1] - bi[i];
 37:     ajtmp = bj + bi[i];
 38:     for  (j=0; j<nz; j++) {
 39:       x = rtmp+36*ajtmp[j];
 40:       x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
 41:       x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
 42:       x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0 ;
 43:       x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0 ;
 44:       x[34] = x[35] = 0.0 ;
 45:     }
 46:     /* load in initial (unfactored row) */
 47:     nz       = ai[i+1] - ai[i];
 48:     ajtmpold = aj + ai[i];
 49:     v        = aa + 36*ai[i];
 50:     for (j=0; j<nz; j++) {
 51:       x    = rtmp+36*ajtmpold[j];
 52:       x[0] =  v[0];  x[1] =  v[1];  x[2] =  v[2];  x[3] =  v[3];
 53:       x[4] =  v[4];  x[5] =  v[5];  x[6] =  v[6];  x[7] =  v[7];
 54:       x[8] =  v[8];  x[9] =  v[9];  x[10] = v[10]; x[11] = v[11];
 55:       x[12] = v[12]; x[13] = v[13]; x[14] = v[14]; x[15] = v[15];
 56:       x[16] = v[16]; x[17] = v[17]; x[18] = v[18]; x[19] = v[19];
 57:       x[20] = v[20]; x[21] = v[21]; x[22] = v[22]; x[23] = v[23];
 58:       x[24] = v[24]; x[25] = v[25]; x[26] = v[26]; x[27] = v[27];
 59:       x[28] = v[28]; x[29] = v[29]; x[30] = v[30]; x[31] = v[31];
 60:       x[32] = v[32]; x[33] = v[33]; x[34] = v[34]; x[35] = v[35];
 61:       v    += 36;
 62:     }
 63:     row = *ajtmp++;
 64:     while (row < i) {
 65:       pc  = rtmp + 36*row;
 66:       p1  = pc[0];  p2  = pc[1];  p3  = pc[2];  p4  = pc[3];
 67:       p5  = pc[4];  p6  = pc[5];  p7  = pc[6];  p8  = pc[7];
 68:       p9  = pc[8];  p10 = pc[9];  p11 = pc[10]; p12 = pc[11];
 69:       p13 = pc[12]; p14 = pc[13]; p15 = pc[14]; p16 = pc[15];
 70:       p17 = pc[16]; p18 = pc[17]; p19 = pc[18]; p20 = pc[19];
 71:       p21 = pc[20]; p22 = pc[21]; p23 = pc[22]; p24 = pc[23];
 72:       p25 = pc[24]; p26 = pc[25]; p27 = pc[26]; p28 = pc[27];
 73:       p29 = pc[28]; p30 = pc[29]; p31 = pc[30]; p32 = pc[31];
 74:       p33 = pc[32]; p34 = pc[33]; p35 = pc[34]; p36 = pc[35];
 75:       if (p1  != 0.0 || p2  != 0.0 || p3  != 0.0 || p4  != 0.0 ||
 76:           p5  != 0.0 || p6  != 0.0 || p7  != 0.0 || p8  != 0.0 ||
 77:           p9  != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 ||
 78:           p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 ||
 79:           p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 ||
 80:           p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 ||
 81:           p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 ||
 82:           p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 ||
 83:           p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0) {
 84:         pv = ba + 36*diag_offset[row];
 85:         pj = bj + diag_offset[row] + 1;
 86:         x1  = pv[0];  x2  = pv[1];  x3  = pv[2];  x4  = pv[3];
 87:         x5  = pv[4];  x6  = pv[5];  x7  = pv[6];  x8  = pv[7];
 88:         x9  = pv[8];  x10 = pv[9];  x11 = pv[10]; x12 = pv[11];
 89:         x13 = pv[12]; x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
 90:         x17 = pv[16]; x18 = pv[17]; x19 = pv[18]; x20 = pv[19];
 91:         x21 = pv[20]; x22 = pv[21]; x23 = pv[22]; x24 = pv[23];
 92:         x25 = pv[24]; x26 = pv[25]; x27 = pv[26]; x28 = pv[27];
 93:         x29 = pv[28]; x30 = pv[29]; x31 = pv[30]; x32 = pv[31];
 94:         x33 = pv[32]; x34 = pv[33]; x35 = pv[34]; x36 = pv[35];
 95:         pc[0]  = m1  = p1*x1  + p7*x2   + p13*x3  + p19*x4  + p25*x5  + p31*x6;
 96:         pc[1]  = m2  = p2*x1  + p8*x2   + p14*x3  + p20*x4  + p26*x5  + p32*x6;
 97:         pc[2]  = m3  = p3*x1  + p9*x2   + p15*x3  + p21*x4  + p27*x5  + p33*x6;
 98:         pc[3]  = m4  = p4*x1  + p10*x2  + p16*x3  + p22*x4  + p28*x5  + p34*x6;
 99:         pc[4]  = m5  = p5*x1  + p11*x2  + p17*x3  + p23*x4  + p29*x5  + p35*x6;
100:         pc[5]  = m6  = p6*x1  + p12*x2  + p18*x3  + p24*x4  + p30*x5  + p36*x6;

102:         pc[6]  = m7  = p1*x7  + p7*x8   + p13*x9  + p19*x10 + p25*x11 + p31*x12;
103:         pc[7]  = m8  = p2*x7  + p8*x8   + p14*x9  + p20*x10 + p26*x11 + p32*x12;
104:         pc[8]  = m9  = p3*x7  + p9*x8   + p15*x9  + p21*x10 + p27*x11 + p33*x12;
105:         pc[9]  = m10 = p4*x7  + p10*x8  + p16*x9  + p22*x10 + p28*x11 + p34*x12;
106:         pc[10] = m11 = p5*x7  + p11*x8  + p17*x9  + p23*x10 + p29*x11 + p35*x12;
107:         pc[11] = m12 = p6*x7  + p12*x8  + p18*x9  + p24*x10 + p30*x11 + p36*x12;

109:         pc[12] = m13 = p1*x13 + p7*x14  + p13*x15 + p19*x16 + p25*x17 + p31*x18;
110:         pc[13] = m14 = p2*x13 + p8*x14  + p14*x15 + p20*x16 + p26*x17 + p32*x18;
111:         pc[14] = m15 = p3*x13 + p9*x14  + p15*x15 + p21*x16 + p27*x17 + p33*x18;
112:         pc[15] = m16 = p4*x13 + p10*x14 + p16*x15 + p22*x16 + p28*x17 + p34*x18;
113:         pc[16] = m17 = p5*x13 + p11*x14 + p17*x15 + p23*x16 + p29*x17 + p35*x18;
114:         pc[17] = m18 = p6*x13 + p12*x14 + p18*x15 + p24*x16 + p30*x17 + p36*x18;

116:         pc[18] = m19 = p1*x19 + p7*x20  + p13*x21 + p19*x22 + p25*x23 + p31*x24;
117:         pc[19] = m20 = p2*x19 + p8*x20  + p14*x21 + p20*x22 + p26*x23 + p32*x24;
118:         pc[20] = m21 = p3*x19 + p9*x20  + p15*x21 + p21*x22 + p27*x23 + p33*x24;
119:         pc[21] = m22 = p4*x19 + p10*x20 + p16*x21 + p22*x22 + p28*x23 + p34*x24;
120:         pc[22] = m23 = p5*x19 + p11*x20 + p17*x21 + p23*x22 + p29*x23 + p35*x24;
121:         pc[23] = m24 = p6*x19 + p12*x20 + p18*x21 + p24*x22 + p30*x23 + p36*x24;

123:         pc[24] = m25 = p1*x25 + p7*x26  + p13*x27 + p19*x28 + p25*x29 + p31*x30;
124:         pc[25] = m26 = p2*x25 + p8*x26  + p14*x27 + p20*x28 + p26*x29 + p32*x30;
125:         pc[26] = m27 = p3*x25 + p9*x26  + p15*x27 + p21*x28 + p27*x29 + p33*x30;
126:         pc[27] = m28 = p4*x25 + p10*x26 + p16*x27 + p22*x28 + p28*x29 + p34*x30;
127:         pc[28] = m29 = p5*x25 + p11*x26 + p17*x27 + p23*x28 + p29*x29 + p35*x30;
128:         pc[29] = m30 = p6*x25 + p12*x26 + p18*x27 + p24*x28 + p30*x29 + p36*x30;

130:         pc[30] = m31 = p1*x31 + p7*x32  + p13*x33 + p19*x34 + p25*x35 + p31*x36;
131:         pc[31] = m32 = p2*x31 + p8*x32  + p14*x33 + p20*x34 + p26*x35 + p32*x36;
132:         pc[32] = m33 = p3*x31 + p9*x32  + p15*x33 + p21*x34 + p27*x35 + p33*x36;
133:         pc[33] = m34 = p4*x31 + p10*x32 + p16*x33 + p22*x34 + p28*x35 + p34*x36;
134:         pc[34] = m35 = p5*x31 + p11*x32 + p17*x33 + p23*x34 + p29*x35 + p35*x36;
135:         pc[35] = m36 = p6*x31 + p12*x32 + p18*x33 + p24*x34 + p30*x35 + p36*x36;

137:         nz = bi[row+1] - diag_offset[row] - 1;
138:         pv += 36;
139:         for (j=0; j<nz; j++) {
140:           x1  = pv[0];  x2  = pv[1];  x3  = pv[2];  x4  = pv[3];
141:           x5  = pv[4];  x6  = pv[5];  x7  = pv[6];  x8  = pv[7];
142:           x9  = pv[8];  x10 = pv[9];  x11 = pv[10]; x12 = pv[11];
143:           x13 = pv[12]; x14 = pv[13]; x15 = pv[14]; x16 = pv[15];
144:           x17 = pv[16]; x18 = pv[17]; x19 = pv[18]; x20 = pv[19];
145:           x21 = pv[20]; x22 = pv[21]; x23 = pv[22]; x24 = pv[23];
146:           x25 = pv[24]; x26 = pv[25]; x27 = pv[26]; x28 = pv[27];
147:           x29 = pv[28]; x30 = pv[29]; x31 = pv[30]; x32 = pv[31];
148:           x33 = pv[32]; x34 = pv[33]; x35 = pv[34]; x36 = pv[35];
149:           x    = rtmp + 36*pj[j];
150:           x[0]  -= m1*x1  + m7*x2   + m13*x3  + m19*x4  + m25*x5  + m31*x6;
151:           x[1]  -= m2*x1  + m8*x2   + m14*x3  + m20*x4  + m26*x5  + m32*x6;
152:           x[2]  -= m3*x1  + m9*x2   + m15*x3  + m21*x4  + m27*x5  + m33*x6;
153:           x[3]  -= m4*x1  + m10*x2  + m16*x3  + m22*x4  + m28*x5  + m34*x6;
154:           x[4]  -= m5*x1  + m11*x2  + m17*x3  + m23*x4  + m29*x5  + m35*x6;
155:           x[5]  -= m6*x1  + m12*x2  + m18*x3  + m24*x4  + m30*x5  + m36*x6;

157:           x[6]  -= m1*x7  + m7*x8   + m13*x9  + m19*x10 + m25*x11 + m31*x12;
158:           x[7]  -= m2*x7  + m8*x8   + m14*x9  + m20*x10 + m26*x11 + m32*x12;
159:           x[8]  -= m3*x7  + m9*x8   + m15*x9  + m21*x10 + m27*x11 + m33*x12;
160:           x[9]  -= m4*x7  + m10*x8  + m16*x9  + m22*x10 + m28*x11 + m34*x12;
161:           x[10] -= m5*x7  + m11*x8  + m17*x9  + m23*x10 + m29*x11 + m35*x12;
162:           x[11] -= m6*x7  + m12*x8  + m18*x9  + m24*x10 + m30*x11 + m36*x12;

164:           x[12] -= m1*x13 + m7*x14  + m13*x15 + m19*x16 + m25*x17 + m31*x18;
165:           x[13] -= m2*x13 + m8*x14  + m14*x15 + m20*x16 + m26*x17 + m32*x18;
166:           x[14] -= m3*x13 + m9*x14  + m15*x15 + m21*x16 + m27*x17 + m33*x18;
167:           x[15] -= m4*x13 + m10*x14 + m16*x15 + m22*x16 + m28*x17 + m34*x18;
168:           x[16] -= m5*x13 + m11*x14 + m17*x15 + m23*x16 + m29*x17 + m35*x18;
169:           x[17] -= m6*x13 + m12*x14 + m18*x15 + m24*x16 + m30*x17 + m36*x18;

171:           x[18] -= m1*x19 + m7*x20  + m13*x21 + m19*x22 + m25*x23 + m31*x24;
172:           x[19] -= m2*x19 + m8*x20  + m14*x21 + m20*x22 + m26*x23 + m32*x24;
173:           x[20] -= m3*x19 + m9*x20  + m15*x21 + m21*x22 + m27*x23 + m33*x24;
174:           x[21] -= m4*x19 + m10*x20 + m16*x21 + m22*x22 + m28*x23 + m34*x24;
175:           x[22] -= m5*x19 + m11*x20 + m17*x21 + m23*x22 + m29*x23 + m35*x24;
176:           x[23] -= m6*x19 + m12*x20 + m18*x21 + m24*x22 + m30*x23 + m36*x24;

178:           x[24] -= m1*x25 + m7*x26  + m13*x27 + m19*x28 + m25*x29 + m31*x30;
179:           x[25] -= m2*x25 + m8*x26  + m14*x27 + m20*x28 + m26*x29 + m32*x30;
180:           x[26] -= m3*x25 + m9*x26  + m15*x27 + m21*x28 + m27*x29 + m33*x30;
181:           x[27] -= m4*x25 + m10*x26 + m16*x27 + m22*x28 + m28*x29 + m34*x30;
182:           x[28] -= m5*x25 + m11*x26 + m17*x27 + m23*x28 + m29*x29 + m35*x30;
183:           x[29] -= m6*x25 + m12*x26 + m18*x27 + m24*x28 + m30*x29 + m36*x30;

185:           x[30] -= m1*x31 + m7*x32  + m13*x33 + m19*x34 + m25*x35 + m31*x36;
186:           x[31] -= m2*x31 + m8*x32  + m14*x33 + m20*x34 + m26*x35 + m32*x36;
187:           x[32] -= m3*x31 + m9*x32  + m15*x33 + m21*x34 + m27*x35 + m33*x36;
188:           x[33] -= m4*x31 + m10*x32 + m16*x33 + m22*x34 + m28*x35 + m34*x36;
189:           x[34] -= m5*x31 + m11*x32 + m17*x33 + m23*x34 + m29*x35 + m35*x36;
190:           x[35] -= m6*x31 + m12*x32 + m18*x33 + m24*x34 + m30*x35 + m36*x36;

192:           pv   += 36;
193:         }
194:         PetscLogFlops(432*nz+396);
195:       }
196:       row = *ajtmp++;
197:     }
198:     /* finished row so stick it into b->a */
199:     pv = ba + 36*bi[i];
200:     pj = bj + bi[i];
201:     nz = bi[i+1] - bi[i];
202:     for (j=0; j<nz; j++) {
203:       x      = rtmp+36*pj[j];
204:       pv[0]  = x[0];  pv[1]  = x[1];  pv[2]  = x[2];  pv[3]  = x[3];
205:       pv[4]  = x[4];  pv[5]  = x[5];  pv[6]  = x[6];  pv[7]  = x[7];
206:       pv[8]  = x[8];  pv[9]  = x[9];  pv[10] = x[10]; pv[11] = x[11];
207:       pv[12] = x[12]; pv[13] = x[13]; pv[14] = x[14]; pv[15] = x[15];
208:       pv[16] = x[16]; pv[17] = x[17]; pv[18] = x[18]; pv[19] = x[19];
209:       pv[20] = x[20]; pv[21] = x[21]; pv[22] = x[22]; pv[23] = x[23];
210:       pv[24] = x[24]; pv[25] = x[25]; pv[26] = x[26]; pv[27] = x[27];
211:       pv[28] = x[28]; pv[29] = x[29]; pv[30] = x[30]; pv[31] = x[31];
212:       pv[32] = x[32]; pv[33] = x[33]; pv[34] = x[34]; pv[35] = x[35];
213:       pv   += 36;
214:     }
215:     /* invert diagonal block */
216:     w = ba + 36*diag_offset[i];
217:     Kernel_A_gets_inverse_A_6(w);
218:   }

220:   PetscFree(rtmp);
221:   C->factor    = FACTOR_LU;
222:   C->assembled = PETSC_TRUE;
223:   PetscLogFlops(1.3333*216*b->mbs); /* from inverting diagonal blocks */
224:   return(0);
225: }