Actual source code: ex19.c

  1: /*$Id: ex19.c,v 1.30 2001/08/07 21:31:17 bsmith Exp $*/

  3: static char help[] = "Nonlinear driven cavity with multigrid in 2d.n
  4:   n
  5: The 2D driven cavity problem is solved in a velocity-vorticity formulation.n
  6: The flow can be driven with the lid or with bouyancy or both:n
  7:   -lidvelocity <lid>, where <lid> = dimensionless velocity of lidn
  8:   -grashof <gr>, where <gr> = dimensionless temperature gradentn
  9:   -prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ration
 10:   -contours : draw contour plots of solutionnn";

 12: /*T
 13:    Concepts: SNES^solving a system of nonlinear equations (parallel multicomponent example);
 14:    Concepts: DA^using distributed arrays;
 15:    Concepts: multicomponent
 16:    Processors: n
 17: T*/

 19: /* ------------------------------------------------------------------------

 21:     We thank David E. Keyes for contributing the driven cavity discretization
 22:     within this example code.

 24:     This problem is modeled by the partial differential equation system
 25:   
 26:         - Lap(U) - Grad_y(Omega) = 0
 27:         - Lap(V) + Grad_x(Omega) = 0
 28:         - Lap(Omega) + Div([U*Omega,V*Omega]) - GR*Grad_x(T) = 0
 29:         - Lap(T) + PR*Div([U*T,V*T]) = 0

 31:     in the unit square, which is uniformly discretized in each of x and
 32:     y in this simple encoding.

 34:     No-slip, rigid-wall Dirichlet conditions are used for [U,V].
 35:     Dirichlet conditions are used for Omega, based on the definition of
 36:     vorticity: Omega = - Grad_y(U) + Grad_x(V), where along each
 37:     constant coordinate boundary, the tangential derivative is zero.
 38:     Dirichlet conditions are used for T on the left and right walls,
 39:     and insulation homogeneous Neumann conditions are used for T on
 40:     the top and bottom walls. 

 42:     A finite difference approximation with the usual 5-point stencil 
 43:     is used to discretize the boundary value problem to obtain a 
 44:     nonlinear system of equations.  Upwinding is used for the divergence
 45:     (convective) terms and central for the gradient (source) terms.
 46:     
 47:     The Jacobian can be either
 48:       * formed via finite differencing using coloring (the default), or
 49:       * applied matrix-free via the option -snes_mf 
 50:         (for larger grid problems this variant may not converge 
 51:         without a preconditioner due to ill-conditioning).

 53:   ------------------------------------------------------------------------- */

 55: /* 
 56:    Include "petscda.h" so that we can use distributed arrays (DAs).
 57:    Include "petscsnes.h" so that we can use SNES solvers.  Note that this
 58:    file automatically includes:
 59:      petsc.h       - base PETSc routines   petscvec.h - vectors
 60:      petscsys.h    - system routines       petscmat.h - matrices
 61:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 62:      petscviewer.h - viewers               petscpc.h  - preconditioners
 63:      petscsles.h   - linear solvers 
 64: */
 65:  #include petscsnes.h
 66:  #include petscda.h

 68: /* 
 69:    User-defined routines and data structures
 70: */
 71: typedef struct {
 72:   PetscScalar u,v,omega,temp;
 73: } Field;

 75: extern int FormInitialGuess(SNES,Vec,void*);
 76: extern int FormFunctionLocal(DALocalInfo*,Field**,Field**,void*);
 77: extern int FormFunctionLocali(DALocalInfo*,MatStencil*,Field**,PetscScalar*,void*);

 79: typedef struct {
 80:    PassiveReal  lidvelocity,prandtl,grashof;  /* physical parameters */
 81:    PetscTruth     draw_contours;                /* flag - 1 indicates drawing contours */
 82: } AppCtx;

 84: #undef __FUNCT__
 86: int main(int argc,char **argv)
 87: {
 88:   DMMG       *dmmg;               /* multilevel grid structure */
 89:   AppCtx     user;                /* user-defined work context */
 90:   int        mx,my,its;
 91:   int        ierr;
 92:   MPI_Comm   comm;
 93:   SNES       snes;
 94:   DA         da;

 96:   PetscInitialize(&argc,&argv,(char *)0,help);
 97:   comm = PETSC_COMM_WORLD;


100:   PreLoadBegin(PETSC_TRUE,"SetUp");
101:     DMMGCreate(comm,2,&user,&dmmg);


104:     /*
105:       Create distributed array multigrid object (DMMG) to manage parallel grid and vectors
106:       for principal unknowns (x) and governing residuals (f)
107:     */
108:     DACreate2d(comm,DA_NONPERIODIC,DA_STENCIL_STAR,-4,-4,PETSC_DECIDE,PETSC_DECIDE,4,1,0,0,&da);
109:     DMMGSetDM(dmmg,(DM)da);
110:     DADestroy(da);

112:     DAGetInfo(DMMGGetDA(dmmg),0,&mx,&my,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
113:                      PETSC_IGNORE,PETSC_IGNORE);
114:     /* 
115:      Problem parameters (velocity of lid, prandtl, and grashof numbers)
116:     */
117:     user.lidvelocity = 1.0/(mx*my);
118:     user.prandtl     = 1.0;
119:     user.grashof     = 1.0;
120:     PetscOptionsGetReal(PETSC_NULL,"-lidvelocity",&user.lidvelocity,PETSC_NULL);
121:     PetscOptionsGetReal(PETSC_NULL,"-prandtl",&user.prandtl,PETSC_NULL);
122:     PetscOptionsGetReal(PETSC_NULL,"-grashof",&user.grashof,PETSC_NULL);
123:     PetscOptionsHasName(PETSC_NULL,"-contours",&user.draw_contours);

125:     DASetFieldName(DMMGGetDA(dmmg),0,"x-velocity");
126:     DASetFieldName(DMMGGetDA(dmmg),1,"y-velocity");
127:     DASetFieldName(DMMGGetDA(dmmg),2,"Omega");
128:     DASetFieldName(DMMGGetDA(dmmg),3,"temperature");

130:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
131:        Create user context, set problem data, create vector data structures.
132:        Also, compute the initial guess.
133:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

135:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
136:        Create nonlinear solver context

138:        Process adiC: FormFunctionLocal FormFunctionLocali
139:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
140:     DMMGSetSNESLocal(dmmg,FormFunctionLocal,0,ad_FormFunctionLocal,admf_FormFunctionLocal);
141:     DMMGSetSNESLocali(dmmg,FormFunctionLocali,ad_FormFunctionLocali,admf_FormFunctionLocali);

143:     PetscPrintf(comm,"lid velocity = %g, prandtl # = %g, grashof # = %gn",
144:                        user.lidvelocity,user.prandtl,user.grashof);


147:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
148:        Solve the nonlinear system
149:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
150:     DMMGSetInitialGuess(dmmg,FormInitialGuess);

152:   PreLoadStage("Solve");
153:     DMMGSolve(dmmg);

155:     snes = DMMGGetSNES(dmmg);
156:     SNESGetIterationNumber(snes,&its);
157:     PetscPrintf(comm,"Number of Newton iterations = %dn", its);

159:     /*
160:       Visualize solution
161:     */

163:     if (user.draw_contours) {
164:       VecView(DMMGGetx(dmmg),PETSC_VIEWER_DRAW_WORLD);
165:     }

167:     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
168:        Free work space.  All PETSc objects should be destroyed when they
169:        are no longer needed.
170:        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

172:     DMMGDestroy(dmmg);
173:   PreLoadEnd();

175:   PetscFinalize();
176:   return 0;
177: }

179: /* ------------------------------------------------------------------- */


182: #undef __FUNCT__
184: /* 
185:    FormInitialGuess - Forms initial approximation.

187:    Input Parameters:
188:    user - user-defined application context
189:    X - vector

191:    Output Parameter:
192:    X - vector
193:  */
194: int FormInitialGuess(SNES snes,Vec X,void *ptr)
195: {
196:   DMMG      dmmg = (DMMG)ptr;
197:   AppCtx    *user = (AppCtx*)dmmg->user;
198:   DA        da = (DA)dmmg->dm;
199:   int       i,j,mx,ierr,xs,ys,xm,ym;
200:   PetscReal grashof,dx;
201:   Field     **x;

203:   grashof = user->grashof;

205:   DAGetInfo(da,0,&mx,0,0,0,0,0,0,0,0,0);
206:   dx  = 1.0/(mx-1);

208:   /*
209:      Get local grid boundaries (for 2-dimensional DA):
210:        xs, ys   - starting grid indices (no ghost points)
211:        xm, ym   - widths of local grid (no ghost points)
212:   */
213:   DAGetCorners(da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL);

215:   /*
216:      Get a pointer to vector data.
217:        - For default PETSc vectors, VecGetArray() returns a pointer to
218:          the data array.  Otherwise, the routine is implementation dependent.
219:        - You MUST call VecRestoreArray() when you no longer need access to
220:          the array.
221:   */
222:   DAVecGetArray(da,X,(void**)&x);

224:   /*
225:      Compute initial guess over the locally owned part of the grid
226:      Initial condition is motionless fluid and equilibrium temperature
227:   */
228:   for (j=ys; j<ys+ym; j++) {
229:     for (i=xs; i<xs+xm; i++) {
230:       x[j][i].u     = 0.0;
231:       x[j][i].v     = 0.0;
232:       x[j][i].omega = 0.0;
233:       x[j][i].temp  = (grashof>0)*i*dx;
234:     }
235:   }

237:   /*
238:      Restore vector
239:   */
240:   DAVecRestoreArray(da,X,(void**)&x);
241:   return 0;
242: }
243: int FormFunctionLocal(DALocalInfo *info,Field **x,Field **f,void *ptr)
244:  {
245:   AppCtx       *user = (AppCtx*)ptr;
246:   int          ierr,i,j;
247:   int          xints,xinte,yints,yinte;
248:   PetscReal    hx,hy,dhx,dhy,hxdhy,hydhx;
249:   PetscReal    grashof,prandtl,lid;
250:   PetscScalar  u,uxx,uyy,vx,vy,avx,avy,vxp,vxm,vyp,vym;

253:   grashof = user->grashof;
254:   prandtl = user->prandtl;
255:   lid     = user->lidvelocity;

257:   /* 
258:      Define mesh intervals ratios for uniform grid.
259:      [Note: FD formulae below are normalized by multiplying through by
260:      local volume element to obtain coefficients O(1) in two dimensions.]
261:   */
262:   dhx = (PetscReal)(info->mx-1);  dhy = (PetscReal)(info->my-1);
263:   hx = 1.0/dhx;                   hy = 1.0/dhy;
264:   hxdhy = hx*dhy;                 hydhx = hy*dhx;

266:   xints = info->xs; xinte = info->xs+info->xm; yints = info->ys; yinte = info->ys+info->ym;

268:   /* Test whether we are on the bottom edge of the global array */
269:   if (yints == 0) {
270:     j = 0;
271:     yints = yints + 1;
272:     /* bottom edge */
273:     for (i=info->xs; i<info->xs+info->xm; i++) {
274:         f[j][i].u     = x[j][i].u;
275:         f[j][i].v     = x[j][i].v;
276:         f[j][i].omega = x[j][i].omega + (x[j+1][i].u - x[j][i].u)*dhy;
277:         f[j][i].temp  = x[j][i].temp-x[j+1][i].temp;
278:     }
279:   }

281:   /* Test whether we are on the top edge of the global array */
282:   if (yinte == info->my) {
283:     j = info->my - 1;
284:     yinte = yinte - 1;
285:     /* top edge */
286:     for (i=info->xs; i<info->xs+info->xm; i++) {
287:         f[j][i].u     = x[j][i].u - lid;
288:         f[j][i].v     = x[j][i].v;
289:         f[j][i].omega = x[j][i].omega + (x[j][i].u - x[j-1][i].u)*dhy;
290:         f[j][i].temp  = x[j][i].temp-x[j-1][i].temp;
291:     }
292:   }

294:   /* Test whether we are on the left edge of the global array */
295:   if (xints == 0) {
296:     i = 0;
297:     xints = xints + 1;
298:     /* left edge */
299:     for (j=info->ys; j<info->ys+info->ym; j++) {
300:       f[j][i].u     = x[j][i].u;
301:       f[j][i].v     = x[j][i].v;
302:       f[j][i].omega = x[j][i].omega - (x[j][i+1].v - x[j][i].v)*dhx;
303:       f[j][i].temp  = x[j][i].temp;
304:     }
305:   }

307:   /* Test whether we are on the right edge of the global array */
308:   if (xinte == info->mx) {
309:     i = info->mx - 1;
310:     xinte = xinte - 1;
311:     /* right edge */
312:     for (j=info->ys; j<info->ys+info->ym; j++) {
313:       f[j][i].u     = x[j][i].u;
314:       f[j][i].v     = x[j][i].v;
315:       f[j][i].omega = x[j][i].omega - (x[j][i].v - x[j][i-1].v)*dhx;
316:       f[j][i].temp  = x[j][i].temp - (PetscReal)(grashof>0);
317:     }
318:   }

320:   /* Compute over the interior points */
321:   for (j=yints; j<yinte; j++) {
322:     for (i=xints; i<xinte; i++) {

324:         /*
325:           convective coefficients for upwinding
326:         */
327:         vx = x[j][i].u; avx = PetscAbsScalar(vx);
328:         vxp = .5*(vx+avx); vxm = .5*(vx-avx);
329:         vy = x[j][i].v; avy = PetscAbsScalar(vy);
330:         vyp = .5*(vy+avy); vym = .5*(vy-avy);

332:         /* U velocity */
333:         u          = x[j][i].u;
334:         uxx        = (2.0*u - x[j][i-1].u - x[j][i+1].u)*hydhx;
335:         uyy        = (2.0*u - x[j-1][i].u - x[j+1][i].u)*hxdhy;
336:         f[j][i].u  = uxx + uyy - .5*(x[j+1][i].omega-x[j-1][i].omega)*hx;

338:         /* V velocity */
339:         u          = x[j][i].v;
340:         uxx        = (2.0*u - x[j][i-1].v - x[j][i+1].v)*hydhx;
341:         uyy        = (2.0*u - x[j-1][i].v - x[j+1][i].v)*hxdhy;
342:         f[j][i].v  = uxx + uyy + .5*(x[j][i+1].omega-x[j][i-1].omega)*hy;

344:         /* Omega */
345:         u          = x[j][i].omega;
346:         uxx        = (2.0*u - x[j][i-1].omega - x[j][i+1].omega)*hydhx;
347:         uyy        = (2.0*u - x[j-1][i].omega - x[j+1][i].omega)*hxdhy;
348:         f[j][i].omega = uxx + uyy +
349:                         (vxp*(u - x[j][i-1].omega) +
350:                           vxm*(x[j][i+1].omega - u)) * hy +
351:                         (vyp*(u - x[j-1][i].omega) +
352:                           vym*(x[j+1][i].omega - u)) * hx -
353:                         .5 * grashof * (x[j][i+1].temp - x[j][i-1].temp) * hy;

355:         /* Temperature */
356:         u             = x[j][i].temp;
357:         uxx           = (2.0*u - x[j][i-1].temp - x[j][i+1].temp)*hydhx;
358:         uyy           = (2.0*u - x[j-1][i].temp - x[j+1][i].temp)*hxdhy;
359:         f[j][i].temp =  uxx + uyy  + prandtl * (
360:                         (vxp*(u - x[j][i-1].temp) +
361:                           vxm*(x[j][i+1].temp - u)) * hy +
362:                         (vyp*(u - x[j-1][i].temp) +
363:                                  vym*(x[j+1][i].temp - u)) * hx);
364:     }
365:   }

367:   /*
368:      Flop count (multiply-adds are counted as 2 operations)
369:   */
370:   PetscLogFlops(84*info->ym*info->xm);
371:   return(0);
372: }

374: /*
375:     This is an experimental function and can be safely ignored.
376: */
377: int FormFunctionLocali(DALocalInfo *info,MatStencil *st,Field **x,PetscScalar *f,void *ptr)
378:  {
379:   AppCtx      *user = (AppCtx*)ptr;
380:   int         i,j,c;
381:   PassiveReal hx,hy,dhx,dhy,hxdhy,hydhx;
382:   PassiveReal grashof,prandtl,lid;
383:   PetscScalar u,uxx,uyy,vx,vy,avx,avy,vxp,vxm,vyp,vym;

386:   grashof = user->grashof;
387:   prandtl = user->prandtl;
388:   lid     = user->lidvelocity;

390:   /* 
391:      Define mesh intervals ratios for uniform grid.
392:      [Note: FD formulae below are normalized by multiplying through by
393:      local volume element to obtain coefficients O(1) in two dimensions.]
394:   */
395:   dhx = (PetscReal)(info->mx-1);     dhy = (PetscReal)(info->my-1);
396:   hx = 1.0/dhx;                   hy = 1.0/dhy;
397:   hxdhy = hx*dhy;                 hydhx = hy*dhx;

399:   i = st->i; j = st->j; c = st->c;

401:   /* Test whether we are on the right edge of the global array */
402:   if (i == info->mx-1) {
403:     if (c == 0) *f     = x[j][i].u;
404:     else if (c == 1) *f     = x[j][i].v;
405:     else if (c == 2) *f = x[j][i].omega - (x[j][i].v - x[j][i-1].v)*dhx;
406:     else *f  = x[j][i].temp - (PetscReal)(grashof>0);

408:   /* Test whether we are on the left edge of the global array */
409:   } else if (i == 0) {
410:     if (c == 0) *f     = x[j][i].u;
411:     else if (c == 1) *f     = x[j][i].v;
412:     else if (c == 2) *f = x[j][i].omega - (x[j][i+1].v - x[j][i].v)*dhx;
413:     else *f  = x[j][i].temp;

415:   /* Test whether we are on the top edge of the global array */
416:   } else if (j == info->my-1) {
417:     if (c == 0) *f     = x[j][i].u - lid;
418:     else if (c == 1) *f     = x[j][i].v;
419:     else if (c == 2) *f = x[j][i].omega + (x[j][i].u - x[j-1][i].u)*dhy;
420:     else *f  = x[j][i].temp-x[j-1][i].temp;

422:   /* Test whether we are on the bottom edge of the global array */
423:   } else if (j == 0) {
424:     if (c == 0) *f     = x[j][i].u;
425:     else if (c == 1) *f     = x[j][i].v;
426:     else if (c == 2) *f = x[j][i].omega + (x[j+1][i].u - x[j][i].u)*dhy;
427:     else *f  = x[j][i].temp-x[j+1][i].temp;

429:   /* Compute over the interior points */
430:   } else {
431:     /*
432:       convective coefficients for upwinding
433:     */
434:     vx = x[j][i].u; avx = PetscAbsScalar(vx);
435:     vxp = .5*(vx+avx); vxm = .5*(vx-avx);
436:     vy = x[j][i].v; avy = PetscAbsScalar(vy);
437:     vyp = .5*(vy+avy); vym = .5*(vy-avy);

439:     /* U velocity */
440:     if (c == 0) {
441:       u          = x[j][i].u;
442:       uxx        = (2.0*u - x[j][i-1].u - x[j][i+1].u)*hydhx;
443:       uyy        = (2.0*u - x[j-1][i].u - x[j+1][i].u)*hxdhy;
444:       *f         = uxx + uyy - .5*(x[j+1][i].omega-x[j-1][i].omega)*hx;

446:     /* V velocity */
447:     } else if (c == 1) {
448:       u          = x[j][i].v;
449:       uxx        = (2.0*u - x[j][i-1].v - x[j][i+1].v)*hydhx;
450:       uyy        = (2.0*u - x[j-1][i].v - x[j+1][i].v)*hxdhy;
451:       *f         = uxx + uyy + .5*(x[j][i+1].omega-x[j][i-1].omega)*hy;
452: 
453:     /* Omega */
454:     } else if (c == 2) {
455:       u          = x[j][i].omega;
456:       uxx        = (2.0*u - x[j][i-1].omega - x[j][i+1].omega)*hydhx;
457:       uyy        = (2.0*u - x[j-1][i].omega - x[j+1][i].omega)*hxdhy;
458:       *f         = uxx + uyy +
459:         (vxp*(u - x[j][i-1].omega) +
460:          vxm*(x[j][i+1].omega - u)) * hy +
461:         (vyp*(u - x[j-1][i].omega) +
462:          vym*(x[j+1][i].omega - u)) * hx -
463:         .5 * grashof * (x[j][i+1].temp - x[j][i-1].temp) * hy;
464: 
465:     /* Temperature */
466:     } else {
467:       u           = x[j][i].temp;
468:       uxx         = (2.0*u - x[j][i-1].temp - x[j][i+1].temp)*hydhx;
469:       uyy         = (2.0*u - x[j-1][i].temp - x[j+1][i].temp)*hxdhy;
470:       *f          =  uxx + uyy  + prandtl * (
471:                                              (vxp*(u - x[j][i-1].temp) +
472:                                               vxm*(x[j][i+1].temp - u)) * hy +
473:                                              (vyp*(u - x[j-1][i].temp) +
474:                                               vym*(x[j+1][i].temp - u)) * hx);
475:     }
476:   }

478:   return(0);
479: }