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Nuclear Spin and Magnetic Resonance

The nuclear spin - Most elements have at least one isotope with a non-zero spin angular momentum, I, and an associated magnetic moment, µ, which are related by the gyromagnetic ratio, ,



.

I is a quantized characteristic of the nucleus, and its value describes the symmetry of the nuclear charge distribution.  In this course we will limit the discussion to spin=1/2 nuclei for which the nuclear charge distribution is spherically symmetric.  The nucleus then has the properties of a magnetic dipole (essentially a bar-magnet), whose strength is given above.  All of the interaction of spin=1/2  nuclei are purely magnetic.

Spin =1/2 nuclei are the most often studied by NMR since they generally have both higher resolution and higher sensitivity spectra (therefore, it is perhaps easier to extract chemical information from these nuclei).  Some representative examples are,

Table of commonly observed, spin=1/2 nuclei:

nucleus
% abundance
(Hz/G)
0 (MHz) at 

9.6 T
0 (MHz) at 

3 T

1H
99.99
4,250
400
125

19F
100
3,995
376
118

31P
100
1,721
162
50.6

13C
1.1
1,069
100.6
31.4

15N
0.37
431
40.56
12.68

Quantum mechanics tells us a few important points about nuclear spins,

1. the projection of the nuclear magnetic moment along any direction is quantized and for spin=1/2 nuclear is restricted to the to values of +/- 

.

2. the uncertainty principle applies and places a limit on the amount of information we can know about the orientation of a nuclear magnetic moment.  At any time, we can only know the magnitude of the vector and its projection along one axis.  The projections along the other two axis are indeterminate (they are in a superposition state).

The Zeeman interaction - In an NMR experiment we are interested in exploring the interaction of the nuclear magnetic moment and an external magnetic field.  The energy of this magnetic dipole-dipole interaction is given classically as,




where Bo is the strength of the external magnetic field.  This external field has a direction and so this provides a coordinate system for the NMR experiment.  From here on, we will work in coordinate systems where the applied magnetic field is oriented along the z-axis.

We can now see that for a spin=1/2 nuclei the two values of the spin along the z-direction, Iz= +/- 1/2, correspond to the nuclear magnetic moment oriented along and against the magnetic field.  Classically we may compare this to the two stable positions of a compass needle in the earth’s magnetic field, a low energy configuration with the needle aligned with the earth’s field, and a higher energy (unstable equilibrium point) with the needle aligned against the earth’s field.  In the case of the nuclear spins, the nuclear moment can not be aligned exactly along the applied field, since this would violate the uncertainty principle, and so there are two states, both of which are represented by cones.

[image: image1.wmf]
The nuclear spin is restricted to being on these two cones oriented along the z-axis.


In NMR the measured signal is the result of transitions between the above two nuclear spin energy levels, and this energy difference is dependent on the magnetic field strength, 

.

[image: image2.wmf]
For obtainable magnetic fields, (1 - 17 T) the characteristic frequency of this interaction is in the radio frequency regime, 1-600 MHz.  We will characterize all of the interactions from here on simply in terms of a angular frequency and set the reduced Plank’s constant to unity.  For protons, the gryomagnetic ratio is 4,250 Hz/G, or 42.5 MHz/T, so at 9.6 T the resonance signal is 400 MHz.

Since the energy difference between these two levels so small, then the NMR measurement is by nature very noisy, and we will need to observe a large number of spin to have a detectable signal ( on the order of 10^18 spins).  Or in other terms, the photon energy associated with an NMR transition is very low, and therefore the detection efficiency of that photon is poor.  We need to record the response of many such photons to achieve an observable signal.  Consider a sample of water, then we have



,

and each of these spins has a nuclear magnetic moment which may be either aligned with or against the applied magnetic field.  In thermal equilibrium, we expect the relative populations of these two states to be in accordance with Boltzman’s statistics,




and at room temperature, the excess population in the lower state corresponds to about 1 spin in 106.  It is this excess polarization that will lead to the NMR signal.  The aligned nuclear magnetic  moments provide a bulk magnetic moment to the sample and thus can be described by a magnetic susceptibility.

Looking back at our picture of the nuclear magnetic moments of isolated spins, if there is a collection of a large number of nuclear spins, then the superposition of these leads to a bulk magnetic moment aligned along the z-axis.  This bulk magnetization (at equilibrium) represents to detectable NMR magnetization, and we will only describe the dynamics of this portion of the magnetization.

We can break the spin dynamics down into two types of motions, 

1. the Larmor precession, a rotation about an applied magnetic field.  This is consistent with the classical interaction or two magnets which is described as a torque,

dM/dt = M x B

2. a damping or relaxation behavior that drives the system back to equilibrium.

Let us explore the torque first, in the presence of an applied magnetic field, then the Larmor precession states that the bulk magnetic moment will revolve about the applied field direction.  If the bulk magnetization is along the field direction, as it is at equilibrium, then there is no torque and hence no motion.  As we expect, at equilibrium the system is stationary.  Note, this is true of the detectable bulk magnetization, but is not true at the microscopic level.  The dynamics of single spins can not be discussed in the classical terms that we are using.

If the system is away from equilibrium, if the bulk magnetization vector is oriented other than along the z-axis, then the magnetization presesses (rotates) about the z-axis with a angular velocity given by the energy separation of the two states ( B0).  Notice that this torque will not change the length of the magnetization vector, it only varries its orientation.

This rotation can not be the only motion, sine then the system would never return to equilibrium.  So along with the rotation, there is a relaxation of the vector to bring it back along the z-axis.  Therefore the x and y-components of the nuclear magnetization decay towards zero, and the z-component decays towards the equilibrium value (typically called M0).  


 
The above is a “quick-time” movie that shows the motion of the bulk magnetization vector starting from a position along the x-axis and then evolving towards its equilibrium position along the z-axis.  The movie was created in Mathematica (see appendix 1-3) and may be run by double clicking on the figure.  The red bar progressing across the figure is meant to represent the flow of time.

Latter we will show how a pulse of radio frequency radiation will tilt the bulk magnetization vector away from the z-axis and creat this non-equilibrium magnetization.  For now, we are only interested in the spin’s return to equilibrium as shown in the above figure.

The NMR signal is detected as an induced voltage in a resonant RF coil.  The rotating magnetic moment of the collection of spins acts as a macroscopic rotating magnetic dipole, and if placed inside a coil, this will give rise to an oscillating voltage across the coil’s terminals.  The induced electro-motive force is given as,




and so we see that the field lines of the RF coil must be perpendicular to the z-axis, since the rotation is about the z-axis, and what we will measure is the time varying x or y-component of the nuclear magnetization.  This signal typically looks like a damped sinusoid.

[image: image3.wmf]
The time variation in the indicidual components of the bulk magnetization vector corresponding to the evolution shown in the quick time movie.

The resonance frequency (or Larmor frequency, 0) may be extracted from this free induction decay (FID) by a Fourier Transformation,




The frequency spectrum is more informative than this time decay, and it is given by the Fourier Transform,




where last equation describes a Lorentizian line, the real portion being the absorbtive and the imaginary being the dispersive.  The integral is easily solved by integrating by parts twice.

[image: image4.wmf]
There are both real and imaginary components, or absorbtive and dispersive components.  In general we are interested in the absorbtive lineshape.

[image: image5.wmf]
A simple block diagram of an NMR spectrometer.  The frequency source generates a sin wave at a frequency close to the resonance frequency.  This is gated, amplified and applied to the probe to generate an excitation field.  Following the excitation and sample consists of a rotating bar magnet that couples into the coil to produce an oscillating voltage across the coil which is detected and amplified.  The mixer is used to remove the excitation frequency so that only the offset frequency is recorded.

[image: image6.wmf]
The Rotating Frame, RF Pulses and the Bloch Equations

Review of Free Precession - Since the individual spins are quantized along the direction of the external magnetic field (along the z-axis), then only this component of the nuclear spin has a definite value at equilibrium, the two transverse components (x and y) are in superposition states.  The bulk nuclear magnetization at equilibrium is a stationary magnetic moment aligned along the z-axis.


As we have seen, the dynamics of this bulk magnetization away from equilibrium can be broken down into two simple motions, 

1) a precession about the applied magnetic field associated with the torque, 




,





and,

2) a relaxation that carries the magnetization back to equilibrium.


Since the external field is about the z-axis, the precession is around the z-axis at a frequency of,



,






the so-called Larmor frequency.


The relaxation process has two components, the magnetization along the z-axis relaxes towards its equilibrium value, M0, and the transverse components (x and y) relax towards zero. The bulk magnetization vector is composed of the magnetic moments of many individual spins and its length has a maximum which is equal to the Boltzman excess population present at equilibrium, M0. However, the magnetization does not have a minimum value since two individual magnetic moments may be anti-parallel to one another and thereby reduce the length of the bulk magnetization vector.  For instance, if the magnet homogeniety is poor, then the FID decreased quickly due to the interference of the spin magnetization from various parts of the sample, yet the z-component of the magnetization is uneffected by this. Therefore, the transverse component can relax at a faster rate than the z component does in its return to equilibrium, and two time constants are required to describe spin relaxation.  These two relaxation times are called the spin-lattice relaxation time, T1, (along the z-axis) and the spin-spin relaxation time, T2, (governing the decay of transverse magnetization).

The Bloch Equations - The Bloch equations describing the complete spin dynamics are,



.



Two useful pictorial representations of the evolution of the spin magnetization back to equilibrium, after having first been placed along the x-axis are shown below.  

[image: image7.wmf]
[image: image8.wmf]
These plots are a result of a simulation run with the following parameters

T1 = 0.5 sec

T2 = 0.5 sec



wo = 20 Hz

The simulation covers times of 0 to 1 seconds.

[image: image9.wmf]
[image: image10.wmf]
T1 = 0.5 sec

T2 = 0.5 sec



w = 10 Hz

Notice the change in the Mx and My components, but no change in the Mz-component.

[image: image11.wmf]
[image: image12.wmf]
T1 = 5 sec

T2 = 0.5 sec



wo = 20 Hz

Notice only Mz(t) is changed from the first plot.

[image: image13.wmf]
[image: image14.wmf]
T1 = 0.5 sec

T2 = 0.05 sec



wo = 20 Hz

Notice that the modulation frequency of Mx,y is the same as the first plot, but the lifetime is greatly reduced.

RF pulses - In terms of the Bloch equations notice that two types of magnetic fields have a pronounced influence on the dynamics: static fields along the z-axis, and transverse fields rotating at the Larmor frequency.  Changes in the strength of the field along the z-axis result in changes in the Larmor frequency.  Since the magnetization is precessing at the Larmor frequency, transverse magnetic fields that rotate about z at the same frequency (resonant fields) will create a constant torque on the spins and rotate them away from the z-axis.  This second motion is most readily seen in a reference frame where the magnetization is stationary, the “rotating” frame defined by the transformation, 










If the applied magnetic fields are separated into two components, a static field along the z-axis, B0, and a rotating field along the x-axis of the rotating frame, B1, then the Bloch equations simplify to,










where,  is a small off-resonance term (the difference between the rotating frame frequency and the Larmor frequency), and 1 is the strength of the rotating field (the radio frequency field),



.




The quick-time movie shows the dynamics associated with an on-resonance(

w=0) RF pulse applied along the x-axis.


For simplicity, the NMR experiment is usually referenced to a frame that moves with an externally applied radio frequency field.  Notice that in transforming to the rotating frame only those components that will influence the spin dynamics were kept, the fields that are static in the rotating frame.  All other fields will be purely oscillatory in this reference frame, and the long time behavior of the spins will not be influenced by them.


The overall NMR experiment can be described with reference to the Block Equation. The spins are placed in a homogeneous magnetic field, and after the populations have reached equilibrium, an RF field is applied for a short time.  This RF pulse rotates the bulk magnetization away from the z-axis at an angular velocity of 1.  By varying the length of the RF pulse the angle can be made equal to 90°, 1 t=π/2, (a so-called π/2 pulse) and the magnetization will be aligned along the y-axis.  The RF field is then turned off and the spins return to equilibrium.  The transverse components of the magnetization vector (Mx and My) are captured by monitoring the voltage induced in a tuned coil wrapped around the sample.


If the spins are off-resonance (

w

0) when a RF pulse is applied, then there is an "effective" field Beff = B1 + 

B = B1 + 

w/

.    The spins naturally evolve about this effective field, not about B1.



This quick time moves show the dynamics associated with an off-resonance RF pulse applied along the x-axis.

NMR and Linearity - The measured signal, the free induction decay (FID), is in the time domain and has the form,



.




[11]

the solution to the Block Equation when B1=0.

The Fourier transformation of the FID is a Lorentzian with a width of,



.





[12]

Since both the Fourier transformation and the Bloch equations in the absence of an RF field are linear, we are free to break the NMR experiment into a superposition of identical experiments on each NMR distinct set of spins.  So, a general result is a frequency spectrum showing many resonances each corresponding to an identifiable spin system.  The frequency differences may arise from small chemical shifts associated with the partial screening of the magnetic field by the electrons, from spin-spin couplings, or from local variations in the magnetic field strength due to the heterogeneity of the magnetic susceptibility throughout the sample.  We will return to these interactions presently.

The Inversion-Recovery method of measuring T1 - 


The value of T1 provides information about the molecular dynamics of the system and fundamentally limits how rapidly NMR spectra may be obtained.  This constant can be measured by the sequence of π - tau - π/2 - detect. The 

-pulse inverts the z magnetization which then returns to its equilibrium value during the time, tau.  The final pulse is used to readout the Mz(tau) intensity.  T1 is measured by making a series of measurement as a function of tau.




A quick-time movie showing the dynamics during an inversion recovery experiment.


The shape of the relaxation curve is seen by solving the Bloch Eqns with ths initial condition M(0) = -M0.  In other words, the initial condition is that the x and y components of the magnetization are zero, therefore they are at their equilibrium value already, and the z-component has been inverted.  In this case we need only concern ourselves with the Bloch equation for the z-magnetization in the absence of an RF field,




which has a solution of,




The shape of the curve is,

[image: image15.wmf]
Plot[1-2 E^-t,{t,0,5}]

and the point of zero crossing is a useful calibration point,




where t/T1 = ln(2) = 0.69.

Magnetization Gradients, k-space and Molecular Diffusion

Magnetic field gradients, magnetization gratings and k-space


In order to record an image of a sample (or obtain other spatial information) there must be a measurable difference introduced between two locations in the sample.  The most straightforward approach to this is to apply a magnetic field gradient,



,





so that the resonance frequency varies across the sample.  

[image: image16.wmf]
Only the three partial derivatives of the z-component of the magnetic field are of interest, since the others correspond to static fields in the transverse direction of the laboratory frame, and thus rotating fields in the rotating frame.  Rotating fields (with respect to the spin) do not influence the long time spin dynamics.


The presence of a magnetic field gradient introduces a spatial heterogeneity into the experiment so that the resonance frequency varies over the sample.

[image: image17.wmf]
Recall that the observed signal is the integrated bulk magnetization from the entire sample.  If a z-gradient (∂Bz/∂z) is applied to a sample whose spin density is described by (x,y,z) then the FID, is,



.




This is put in a more recognizable form by introducing the reciprocal space vector, 



,






and by defining the projection of the spin density along the z-axis,



,





so that,



,





where Mx,y(t,0) is the NMR signal in the absence of the magnetic field gradient.  The measured NMR signal in the presence of a magnetic field gradient is the Fourier transform of the projection of the spin density along the direction of the gradient convoluted with the NMR lineshape in the absence of the gradient,



.




It is helpful to understand how it is that the NMR signal is a measure of the Fourier components of the spin density.  As shown above, spin evolution in the presence of a magnetic field gradient introduces a sinusoidal magnetization grating across the sample and the k-vector describes the spacing of the grating,



,






where z is the period of the grating.

  

The above figure shows the modulation of My for a cylindrical sample in a transverse gradient as a function of time, or k.

The essence of the NMR imaging experiment is that by a suitable combination of magnetic field gradients oriented along the x, y, and z laboratory frame directions any Fourier component of the spin density can be measured.  Since these gradients are under experimental control and can be switched on in a time very short compared to the NMR relaxation times, then there is a great deal of flexibility in how one proceeds to record all of the necessary Fourier components needed to reconstruct an image.  We will return to this after discussing the limits to resolution, and multiple-pulse experiments (see lecture 4).

[image: image18.wmf]
A schematic description of a one-dimensional NMR imaging experiment to measure the projection of the object spin density along a given axis.  The object is shown and consists of two regions of spins with circular and square cross sections.  The z-axis is identified and the applied magnetic field gradient is a ∂Bz/∂z gradient, so the Larmor frequency of the spins in the object increases from left to right.  The measurement is proceeded by an RF pulse that excites the spins and places them in the transverse plane.  The three profiles of the object show one axis of the transverse magnetization at three different values of k.  Higher k values correspond to finer magnetization gratings.  The NMR signal is the integrated spin magnetization across the sample which for this sample has the shape shown following the RF pulse.

Above, the NMR image is described as a convolution of a spatial function describing the density of the spins, and a frequency function describing the NMR spectrum.  To make sense of this, the NMR spectrum must be converted into spatial units.  Notice that in the presence of a constant magnetic field gradient, the two reciprocal space vectors, time and k, are directly proportional to each other,



.






So if the NMR spectrum corresponds to a single resonance line (such is the case for water) then the image resolution can be described in terms of the linewidth, fwhm, (or the spin-spin relaxation time) and the gradient strength,



.






Sharper lines and stronger gradients lead to higher resolution.  This is what makes NMR imaging of solids challenging since the T2 is approximately 1000 times shorter for solids than for liquids. 




The above movie shows a repeat of the spatial encoding shown earlier but here attenuation due to spin-spin relaxation is included.  The grating decays as, exp(-k/( G T2)), where T2 = 1 m s and G = 1 Gauss.  Notice that at fine gratings the modulation no longer fills the entire object.

There are other limitations to the obtainable resolution, the most important in microscopy of liquids being the random molecular motions of the spins.  Water has a diffusion coefficient of about 3 µm2/ms at room temperature, and as the molecules move they carry their magnetic moment with them.  This leads to an irreversible blurring of the magnetization grating and hence a loss in high spatial frequency information.  The influence of the spin’s motion on the magnetization grating is included in the Bloch Eq. by adding a diffusion term,



.






In a constant grating, 



,

and as the molecules move the overall action is an attenuation of this grating,



,

where A is a real number.



,

or



.

This has solutions of,



,

so the magnetization decays as,



in a constant grating where k is not a function of time.

In the case of a constant magnetic field gradient where k is a linear function of time, and decay rate is somewhat slower reflecting the buildup of the grating,



.





The factor three in the exponential of the final expression arises since the spacing of the grating varies with time, and the attenuation is most pronounced for finer gratings.




The above movie shows a repeat of the spatial encoding shown earlier but here attenuation due to molecular diffusion is included.  Notice that compared to the attenuation from the spin-spin relaxation term, diffusion is only pronounced at fine gratings.

There are thus two pronounced attenuation terms seen in a constant gradient, the spin-spin relaxation and the diffusive attenuation.  Both of these are normally written in terms of time, but are conveniently rewritten in terms of k for the case k initial is zero and t=k/g.




[image: image19.wmf]
Plots showing the relative shapes of the spin-spin and diffusive attenuations.  The curves are drawn for the case g=1G/cm, D=3 x 10-5 cm2/sec, and T2 = 0.1 sec.  The exponential decay is from spin-spin relaxation and the Gaussian is from diffusion.

That the various interactions, gradient, chemical shift, susceptibility, couplings, each drive the spin dynamics individually is useful and permits a simple linear model of the imaging system’s sensitivity and resolution, but equally important (particularly in creating contrast) is the experimenter’s ability to separate these by selectively refocusing one or more interactions.  The gradient echo is perhaps the simplest example of this.  Recall that the periodicity of the magnetization grating is the zero moment of the time-dependent gradient waveform (the integrated area of the waveform.  By applying the gradient as a bi-polar pulse pair (see the following figure) the grating is removed from the object at the end of the gradient waveform and the spins are re-focused (back in phase).

[image: image20.wmf]
A gradient echo is generated by a bi-polar gradient waveform.  Since the k-vector is the integrated area under the gradient waveform  at the end of the bi-polar gradient k returns to zero, and there is no magnetization grating across the sample.  At the mid-point of the gradient waveform k is maximum and the grating is at its finest.  Since the NMR signal is the integration of the spin magnetization across the sample, the signal maximums correspond to the two points where k is zero, and hence an echo is observed.

Since the only interaction that is influenced by the presence of a gradient is the gradient evolution itself, the bipolar gradient waveform shown in the figure will not refocus the chemical shift, or any other internal interaction.  We will leave the applications of gradient echoes to the next lecture.  Here we make the point, that the gradient echo may be employed to observe the extent of attenuation due to molecular diffusion.

Gradient and Spin Echoes

Echoes and Multiple-Pulse Experiments

Last class we saw that selected spin dynamics could be made to run backwards in time and thus to create an echo.  This was demonstrated via a “gradient” echo where after a period of time the gradient direction was inverted and the spin evolved back until they were once again in phase.

[image: image21.wmf]
A gradient echo is generated by a bi-polar gradient waveform.  Since the k-vector is the integrated area under the gradient waveform  at the end of the bi-polar gradient k returns to zero, and there is no magnetization grating across the sample.  At the mid-point of the gradient waveform k is maximum and the grating is at its finest.  Since the NMR signal is the integration of the spin magnetization across the sample, the signal maximums correspond to the two points where k is zero, and hence an echo is observed.

Since the only interaction that is influenced by the presence of a gradient is the gradient evolution itself, the bipolar gradient waveform shown above will only refocus the gradient.


In select cases the sign of the interaction can be changed, as it was in the gradient echo, but in general refocussing is accomplished through the actions of RF pulses that strongly modulate the spin dynamics.  RF pulses are normally arranged such that the RF field strength is stronger than any internal interaction and so they can be thought of as instantaneously changing the spin state of the system.


The simplest RF pulse created echo is the two pulses (π/2,π) sequence shown below.  The first RF pulse rotates the magnetization from the z-axis into the transverse plane, where in the presence of a gradient it creates a magnetization grating.  The π pulse invert the sense (directionality) of this grating so that continued evolution in the magnetic field gradient leads to the formation of an echo.

[image: image22.wmf]
The figure shows the actions of a π-pulse when applied to a magnetization grating.  Here both quadrature components of the transverse magnetization must be kept track of, and these are color coded blue and red in the figure.  The two gratings are shown just before and just after the π-pulse which inverts the sign of one of the two components (the red in the figure).  This is consistent with the RF pulse corresponding to a rotation of 180° about an axis in the transverse plane.  Before and after the π-pulse and magnetization grating has the same pitch, but the sign of the grating is changed by the pulse.  Following the π-pulse the magnetic field gradient is still in the same direction and so the k-vector continues to increase, but now towards zero, and following an equal length of time k returns to zero and all of the magnetization is again coherent.  A spin echo is formed.


The spin echo will refocus any time-independent variations in the resonance frequency, including chemical shifts, susceptibility shifts, and heteronuclear spin couplings.  Earlier the spin-spin relaxation time was identified with the decay of the bulk magnetization in the transverse plan, we now see that this is not a fundamental relaxation phenomena since, for example, the applications of a magnetic field gradient can increase its rate, and since the magnetization can be refocussed.  The fundamental spin-spin relaxation rate is associated with those decay processes that can not be refocussed by methods such as the spin echo, and the observed decay of the transverse magnetization is the rate sum of this and other contributions,



.






One very useful imaging application of the spin echo is to change the image contrast from being a measure of the pure spin density (by using a spin echo to refocus spatial variations in the observed T2), to being dependent on the local magnetic field variations (by using a gradient echo).




The above quicktime movie shows the dynamics of 4 spin packets during a Hahn echo sequence of 90x - tau - 180x.  Notice that the signal refocuses along -y.




The above quicktime movie shows the dynamics of 4 spin packets during a Hahn echo sequence of 90x - tau - 180y.  Notice that the signal refocuses along +y.


Any train of RF pulse will create a pattern of echoes, that can refocus line broadening terms.  




The above quicktime movie shows the dynamics of four spin packets during a 90x - tau - 90x sequence.  Notice that an echo is formed from only 1/2 of the total spin magnetization.

A second application of spin echoes is to store information that can then be read out latter.  The stimulated echo shown in figure 8 is a classic example of this.

[image: image23.wmf]
Schematic view of a π/2, π/2 echo and the stimulated echo.  The second π/2 RF pulse rotates one component of the transverse spin magnetization to the z-axis (along the field) where it does not evolve (recall that in the Bloch Eqns the z-magnetization only slowly decays).  The remaining transverse magnetization is now an oscillator function of the spatial coordinate and so is a combination of +k and -k states (the blue trajectories in the figure).  Likewise the z-magnetization is also a combination of +k and -k (the red lines).  Between the second and third RF pulses, only the transverse components evolve, and only one half of the signal forms an echo.  The third RF pulse returns the magnetization that was stored along the z-axis back into the transverse plane where it too evolves and eventually yields the “stimulated” echo.  This echo has special importance, since between the second and third pulses the corresponding magnetization was stored as a spatial grating.

In addition to the stimulated echo, there are four other echoes in the stimulated echo sequence.

[image: image24.wmf]
One of the most useful features of the stimulated echo is that a magnetization grating can be stored for a time comparable to the spin-lattice relaxation time (on the order of a few seconds), this is an ideal approach to measuring extremely slow processes - for instance molecular transportation over macroscopic distances.

Notice that following a 90x - tau - 90x sequence, there is a grating stored along the z-axis that may be described as a cosine modulation,



.

If there is a coherent flow process, then during the storage time this grating is translated into,



,

which may be described as a modulation of the original grating,



.

So the result of a translation of the grating is an amplitude modulation of the two k-vectors that describe the modulation.  this is shown in the following figure, and a translation corresponding to a 90° phase shift inverts the sign of the echo.

[image: image25.wmf]
2-D Imaging and Slice Selection

The NMR Microscope


There are many excellent descriptions of NMR instrumentation, here the focus is on the changes necessary to implement microscopy on a high resolution, high field spectrometer.  Fortunately these are quite modest, since many spectrometer have the necessary gradient amplifiers and controllers, and all modern instruments are capable of performing the experiments.  The fundamental difference is the NMR probe, shown schematically below.

[image: image26.wmf]
A schematic representation of the NMR microscopy probe, the magnetic field is along the vertical axis.  The probe has a small RF coil wrapped tightly about the sample, the good filling of the coil is necessary to reduce resistive losses in the coil.  This is surrounded by three gradient coils that are connected to audio frequency amplifiers.  The z-gradient is a Maxwell pair through which currents flow in opposite directions.  Moving inwards, the x and y-gradient coils are each composed of four semi-circular current paths through which currents flow in parallel.  


Notice that the field of view is normally limited physically by the size of sample that can be accommodated in the RF coil.  This is advantageous for sensitivity reasons, and quite necessary for reasonable experimental times.  Some typical values are given in table 2.

Table 2  Some typical NMR Microscopy Probe Configurations

field of view
2.5 cm
1.0 cm
2.5 mm

resolution
100 µm
20 µm
5 µm

gradient strength
50 G/cm
100 G/cm
1,000 G/cm

magnet 
9.6T/89 mm
9.6T/89 mm
14T/54 mm

2-D Imaging


Having seen that by applying a magnetic field gradient one can encode a 1-D image and collect a projection of the spin density of the sample, one clear path to 2-D imaging is to collect a series of such projections with the gradient at various orientations and then to use Radon filtered back projection to reconstruct the image.  Early NMR images were acquired in this fashion, and occasionally solid state images still are.  However, most imaging is performed via Fourier Imaging where a 2 or 3-D region of reciprocal space is sampled corresponding to the desired resolution and field of view.  Such data are easily measured since the gradients are under experimental control and virtually any gradient waveform can be generated.  Since the various sequences can be rather complex, often a pictorial representation of reciprocal space is employed where the trajectory of the experiment is mapped out.  It is then possible to focus on the manner in which 2-D k-space is sampled rather than to get caught up in the details of the NMR experiment.

[image: image27.wmf]
A generic 2-D Fourier imaging experiment.  The data are collected on a Cartesian raster during the time period labeled t2, and in the presence of a y-gradient.  Prior to this, a brief x-gradient pulse has been applied to create a magnetization grating in the x-direction.  The collection period therefore corresponds to the red rays in the reciprocal space picture at right, and reach individual ray is collected during a separate experiment.  The length of t1 is systematically varied to achieve the desired offset along the kx axis.


Notice that the imaging experiment contains two fundamentally different times, a phase encoding interval (t1 during which no data are acquired) and a frequency encoding interval (during data acquisition).  These two times permit the separate encoding of the two interactions - the gradients in the two orthogonal directions - and thus allow all of k-space to be sampled.  The image is the 2-D Fourier transform of the collected data.


The gradient evolution during the phase encoding interval can be carried out in two fashions, the gradient strength can be kept constant and the time incremented, or the time can be kept constant and the gradient strength incremented.  The second, called spin-warp imaging, has advantages since the extent of the evolution due to chemical shift or other non-gradient interactions is kept constant and these then appear solely as a signal attenuation factor.  The resultant point spread function for a constant encoding time is an attenuated delta function (neglecting the contribution from sampling).


There are a wide range of imaging sequences and we will not attempt to review these here, they all include the general features shown above.  The two dimensional experiments can be extended to three dimensions by encoding the third direction as a second phase encoded axis. 







Slice Selection


Recording a full three dimensional image is often not the most economical approach to imaging and slice selection can be achieved by taking advantage of the frequency offset dependence of RF excitation.  Looking back at the Bloch equations, Eq. [9], for an on resonance RF pulse (=0) the RF field is along the x-axis and hence the evolution of the spins is a simple rotation about the x-axis.  However as  increases, then the dynamics become more complex and are most easily visualized by considering an “effective” field that is the vector sum of the RF field along the x-axis and the off-resonance field along the z-axis.  The dynamics are still a simple rotation about this effective field, but the motion of the magnetization vector now describes a cone rather than a plane.  The result is that as the frequency offset is increased the angle of the effective field to the z-axis decreases and eventually the RF pulse has very little influence.  The key to slice selection then is to apply a relatively weak RF pulse in the presence of a strong gradient, so that the frequency offset is spatially dependent. 

[image: image28.wmf]
Calculated selective excitation profiles for a weak RF pulse in the presence of a magnetic field gradient.  The pulse length is set to rotate the on-resonance spins (at the origin) by 90°, and notice that as the resonance offset increases (with increasing z) the effective rotation angle becomes smaller and most of the magnetization remains along the z-axis.  For most images, a shaped RF pulse is employed that creates a square magnetization profile.


There is not a simple linear picture of the dynamics, but various shaped (amplitude modulated) RF pulses have been developed that give well defined square slice selection profiles.


So the overall slice selected 2-D imaging experiment might look like,

[image: image29.wmf]
A slice selected 2-D spin warp, gradient echo sequence.  Notice that during the phase encoding time the ky vector is offset so that both positive and negative values can be sampled.  Since NMR is a coherent spectroscopy, this has the advantage of measuring the phase.  The gradient echo in the slice selection direction refocuses evolution of the spins during the selective RF pulse.

The figure on the next page show a schematic representation of the weightings of spin density that are recorded in a 2-D imaging sequence.  The white areas correspond to a weighting of +1 and the dark areas to a weighting of -1.
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More Imaging and Flow Studies

Spin Echo Imaging


We have previously seen that a gradient echo is a rather limited type of echo in that only the gradient interaction itself is refocused, all other effects that lead to variations in the Larmor frequency continue to cause dephasing.  Therefore, the gradient echo is limited by the T2* decay and typically a rather uniform main field is required for good images.  The read echo in a 2D Fourier imaging experiment may also be formed as a spin echo by using a π refocusing pulse and by keeping the read gradient constant.  The overall slice selected 2-D spin echo imaging experiment might look like,

[image: image47.wmf]
A slice selected 2-D spin warp, spin echo sequence.  Notice that during the phase encoding time the ky vector is offset so that both positive and negative values can be sampled.


Notice that the π refocusing pulse has the affect of changing the sign of the wave-number of the grating in the read direction.  


Since the spin echo intensity decays exponentially as T2, which is always larger than T2*, the spin echo image has better sensitivity than the gradient echo and more closely reflects that sample’s true spin density.

Phase Cycling and Spin Echoes


Ideally in a spin echo image that start of signal detection occurs immediately following the π pulse.  This introduces a slight complication particularly when the π pulse is not spatially selective,  A perfect π pulse does not introduce any transverse magnetization but as we have seen, no π pulse can be perfect off resonance.  In addition, when a non-selective π pulse is used it can nutate the magnetization for all those spins that are outside of the selected slice (the magnetization was left along z after the selective π/2 pulse).  The undesired result is that the π pulse introduces a free induction decay signal immediately following is, and this magnetization was not in the transverse plane before the π pulse, so it is not modulated by the phase encoding gradient.  Due to this lack of modulation, such signals appear at zero frequency in the phase direction and are called axial resonances.


We will use phase cycling to remove these undesired axial resonances.  Phase cycling is widely employed in NMR and typically works by varying the transmitter phase of one or more pulses in such a manner that the signal and the artifact are modulated differently.  The receiver phase is then arranged to follow the signal and the artifact is canceled after a number of co-added transients.


The particular phase cycle of interest is called Exorcycle (by R. Freeman) and relies on the changes in spin echo phase as the refocusing pulse’s phase is changed.  Recall that we saw that in the π/2 - π  - echo sequence a 90° phase shift of the π pulse changed the sign of the echo.  This result, which we showed via a vector picture, may be generalized by rewriting the π)x+a pulse in terms of a z-pulse.  First, a is a phase angle from the x-axis in our right handed coordinate system.  Since the π pulse will still be in the x,y plane, the axis (x+a) is rotated into the x-axis by a -a rotation about the z-axis, a)z.

[image: image48.wmf]
So the pulse π)x+a is equivalent to a combination of the three pulses,




Notice that the last a)z pulse is needed to return to the original reference frame.


Now consider the spin echo sequence as,





Spins in the transverse plane during t1 see the composite pulse, however spins that are along z during t1 and are subsequently excited by the π pulse see only the last two pulses of the composite pulse.


So the desired signal, the echo, sees,




and since




therefore the echo is shifted by 2a)z as though it followed the experiment,




The undesired signal sees just a fraction of the experiment,




and so it is only shifted in phase by a.


In a four step phase cycle the fid following the π pulse is removed,




Image Contrast


Often is imaging the contrast is more important than the resolution or the sensitivity.  We have touched on a variety of means of generating contrast,

T1 - spin echo image, recycle faster attenuates long T1 signals

T2 - spin echo image, long echo time attenuates short T2 signal

T2* - gradient echo, long echo time attenuates short T2* signal

D - spin echo leads to attenuation of diffusion in the read direction

w - selective pulse without gradient becomes chemical shift selective.

In plant imaging some contrast might be seen around air passages introduced by T2* due to susceptibility shifts, and by T1 where lipids are present (lipids typically have a longer T1 than water).

Encoding Motion


We have already seen that a gradient echo is sensitive to molecular diffusion, here we will see how to measure coherent motions.  We can easily describe the overall motion as a power series,




One way of monitoring the sensitivity of a experiment to motion is to follow the overall phase evolution in a generalized gradient echo sequence,




The above integrals are called moments of the gradient wave-form and it is relatively simple to define gradient shapes such that subsets of these are zero.
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