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Electric and Magnetic Field Lenses

The subject of charged particle optics is introduced in this chapter. The concern is the control of
the transverse motion of particles by shaped electric and magnetic fields. These fields bend
charged particle orbits in a manner analogous to the bending of light rays by shaped glass lenses.
Similar equations can be used to describe both processes. Charged particle lenses have extensive
applications in such areas as electron microscopy, cathode ray tubes, and accelerator transport.

In many practical cases, beam particles have small velocity perpendicular to the main direction
of motion. Also, it is often permissible to use special forms for the electric and magnetic fields
near the beam axis. With these approximations, the transverse forces acting on particles are linear;
they increase proportional to distance from the axis. The treatment in this chapter assumes such
forces. This area is calledlinear or Gaussiancharged particle optics.

Sections 6.2 and 6.3 derive electric and magnetic field expressions close to the axis and prove
that any region of linear transverse forces acts as a lens. Quantities that characterize thick lenses
are reviewed in Section 6.4 along with the equations that describe image formation. The bulk of
the chapter treats a variety of static electric and magnetic field focusing devices that are
commonly used for accelerator applications.
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6.1 TRANSVERSE BEAM CONTROL

Particles in beams always have components of velocity perpendicular to the main direction of
motion. These components can arise in the injector; charged particle sources usually operate at
high temperature so that extracted particles have random thermal motions. In addition, the fields
in injectors may have imperfections of shape. After extraction, space charge repulsion can
accelerate particles away from the axis. These effects contribute to expansion of the beam.
Accelerators and transport systems havelimited transverse dimensions. Forces must be applied to
deflect particles back to the axis. In this chapter, the problem of confining beams about the axis
will be treated. When accelerating fields have a time dependence, it is also necessary to consider
longitudinal confinement of particles to regions along the axis. This problem win be treated
in Chapter 13.

Charged particle lenses perform three types of operations. One purpose of lenses is toconfinea
beam, or maintain a constant or slowly varying radius (see Fig. 6.1a). This is important in
high-energy accelerators where particles must travel long distances through a small bore. Velocity
spreads and space-charge repulsion act to increase the beam radius. Expansion can be countered
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by continuous confining forces which balance the outward forces or through a periodic array of
lenses which deflect the particles toward the axis. In the latter case, the beam outer radius (or
envelope) oscillates about a constant value.
A second function of lenses is tofocusbeams or compress them to the smallest possible radius
(Fig. 6.1b). If the particles are initially parallel to the axis, a linear field lens aims them at a
common point. Focusing leads to high particle flux or a highly localized beam spot. Focusing is
important for applications such as scanning electron microscopy, ion microprobes, and
ion-beam-induced inertial fusion.

A third use of charged particle lenses is forming animage. (Fig. 6.1c). When there is a spatial
distribution of beam intensity in a plane, a lens can make a modified copy of the distribution in
another plane along the direction of propagation. An image is formed if all particles that leave a
point in one plane are mapped into another, regardless of their direction. An example of charged
particle image formation is an image intensifier. The initial plane is a photo-cathode, where
electrons are produced proportional to a light image. The electrons are accelerated and deflected
by an electrostatic lens. The energetic electrons produce an enhanced copy of the light image
when they strike a phosphor screen.

The terminology for these processes is not rigid. Transverse confinement is often referred to as
focusing. An array of lenses that preserves the beam envelope may be called a focusing channel.
The processes are, in a sense, interchangeable. Any linear field lens can perform all three
functions.

6.2 PARAXIAL APPROXIMATION FOR ELECTRIC AND MAGNETIC
FIELDS

Many particle beam applications require cylindrical beams. The electric and magnetic fields of
lenses for cylindrical beams are azimuthally symmetric. In this section, analytic expressions are
derived expressions for such fields in the paraxial approximation. The termparaxial comes from
the Greekpara meaning "alongside of." Electric and magnetic fields are calculated at small radii
with the assumption that the field vectors make small angles with the axis. The basis for the
approximation is illustrated for a magnetic field in Figure 6.2. The currents that produce the field
are outside the beam and vary slowly inz over scale lengths comparable to the beam radius.

Cylindrical symmetry allows only componentsBr andBz for static magnetic fields. Longitudinal
currents at small radius are required to produce an azimuthal fieldB

θ
. The assumptions of this

section exclude both particle currents and displacement currents. Similarly, only the electric field
componentsEr andEz are included. In the paraxial approximation,B andE make small angles
with the axis so thatEr « Ez andBr « Bz.
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φ(r,z) � φ(0,z) � Ar (�φ/�z)|o � Br 2 (�2φ/�z2)|o

� Cr 3 (�3φ/�z3)|o � Dr 4 (�4φ/�z4)|o � ...
(6.1)

4B (�2φ/�z2) � 16D r 2 (�4φ/�z4)

� ... � (�2φ/�z2) � B r 2 (�4φ/�z4) � ... � 0.
(6.2)

φ(r,z) � φ(0,z) � (r 2/4) (�2φ/�z2)|o. (6.3)

E(0,z) � �(�φ/�z)|o, Er(r,z) � (r/2) (�2φ/�z2)|o. (6.4)

The following form for electrostatic potential is useful to derive approximations for paraxial
electric fields:

The z derivatives of potential are evaluated on the axis. Note that Eq. (6.1) is an assumed form,
not a Taylor expansion. The form is valid if there is a choice of the coefficientsA, B, C,...,such
thatφ(r, z) satisfies the Laplace equation in the paraxial approximation. The magnitude of terms
decreases with increasing power of r. A term of ordern has the magnitudeφo(∆r/∆z)n, where∆r
and∆z are the radial and axial scale lengths over which the potential varies significantly. In the
paraxial approximation, the quantity∆r/∆z is small.

The electric field must go to zero at the axis since there is no included charge. This implies that
A = 0 in Eq. (6.1). Substituting Eq. (6.1) into (4.19), we find that the coefficients of all odd
powers ofr must be zero. The coefficients of the even power terms are related by

This is consistent ifB = - 1/4 andD = - B/16 = 1/64.To second order in∆r/∆z, φ(r, z) can be
expressed in terms of derivatives evaluated on axis by

The axial and radial fields are
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Er(r,z) � �(r/2) [�Ez(0,z)/�z]. (6.5)

Ez(r,z) � Ez(0,z) � (r 2/4) [�2Ez(0,z)/�z2]. (6.6)

Br(r,z) � �(r/2) [�Bz(0,z)/�z]. (6.7)

This gives the useful result that the radial electric field can be expressed as the derivative of the
longitudinal field on axis:

Equation (6.5) will be applied in deriving the paraxial orbit equation (Chapter 7). This equation
makes it possible to determine charged particle trajectories in cylindrically symmetric fields in
terms of field quantities evaluated on the axis. A major implication of Eq. (6.5) is that all
transverse forces are linear in the paraxial approximation. Finally, Eq. (6.5) can be used to
determine the radial variation ofEz. Combining Eq. (6.5) with the azimuthal curl equation (�Ez/�r
- �Er/�z = 0) gives

The variation ofEz is second order with radius. In the paraxial approximation, the longitudinal
field and electrostatic potential are taken as constant in a plane perpendicular to the axis.
A parallel treatment using the magnetic potential shows that
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Figure 6.3 is an example of a paraxial magnetic field distribution. The fields are produced by two
axicentered circular coils with currents in the same direction. In plasma research, the field
distribution is called amagnetic mirror. It is related to the fields used in cyclotrons and betatrons.
The magnitude ofBz(0, z) is maximum at the coils. The derivative ofBz is positive forz > 0 and
negative forz < 0. Consider a positively charged particle with an axicentered circular orbit that
has a positive azimuthal velocity. If the particle is not midway between the coils, there will be an
axial forceqv

θ
Br. Equation (6.7) implies that this force is in the negativez direction forz > 0 and

the converse whenz < 0. A magnetic mirror can provide radial and axial confinement of rotating
charged particles. An equivalent form of Eq. (6.6) holds for magnetic fields. Because�Bz

2/�z2 is
positive in the mirror, the magnitude ofBz decreases with radius.

6.3 FOCUSING PROPERTIES OF LINEAR FIELDS

In this section, we shall derive the fact that all transverse forces that vary linearly away from an
axis can focus a parallel beam of particles to a common point on the axis. The parallel beam,
shown in Figure 6.4, is a special case oflaminar motion. Laminar flow (fromlamina, or layer)
implies that particle orbits at different radii follow streamlines and do not cross. The ideal laminar
beam has no spread of transverse velocities. Such beams cannot be produced, but in many cases
laminar motion is a valid first approximation. The derivation in this section also shows that linear
forces preserve laminar flow.

The radial force on particles is taken asFr(r) = -A(z,vr) r. Section 6.2 showed that paraxial
electric forces obey this equation. It is not evident that magnetic forces are linear with radius since
particles can gain azimuthal velocity passing through radial magnetic fields. The proof that the
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∆vz/vz � �(vr/vz) (∆vr/vz).

d/dt � vz (d/dz). (6.8)

d 2r/dt 2
� Fr(r,z,vz)/mo.

d(vzr
�)/dt � vzr

�v �

z � v2
z r ��

� Fr/mo,

dr �/dz � Fr(r,z,vz)/mov
2
z � v �

zr
�/vz, r �

� dr/dz. (6.9)

combination of magnetic and centrifugal forces gives a linear radial force variation is deferred to
Section 6.7.

Particle orbits are assumed paraxial; they make small angles with the axis. This means thatvr «
vz. The total velocity of a particle isvo

2 = vr
2 + vz

2. If vo is constant, changes of axial velocity are
related to changes of radial velocity by

Relative changes of axial velocity are proportional to the product of two small quantities in the
paraxial approximation. Therefore, the quantityvz is almost constant in planes normal toz. The
average axial velocity may vary withz because of acceleration inEz fields. If vz is independent of
r, time derivatives can be converted to spatial derivatives according to

The interpretation of Eq. (6.8) is that the transverse impulse on a particle in a time∆t is the same
as that received passing through a length element∆z = vz∆t. This replacement gives differential
equations expressing radius as a function ofz rather thant. In treatments of steady-state beams,
the orbitsr(z) are usually of more interest than the instantaneous position of any particle.

Consider, for example, the nonrelativistic transverse equation of motion for a particle moving in
a plane passing through the axis in the presence of azimuthally symmetric radial forces

Converting time derivatives to axial derivatives according to Eq. 6.8 yields

or

A primed quantity denotes an axial derivative. The quantityr' is the angle between the particle
orbit and the axis. The motion of a charged particle through a lens can be determined by a
numerical solution of Eqs. (6.9). Assume that the particle hasr = r o andr' = 0 at the lens
entrance. Calculation of the final position,rf and angle,rf’ determines the focal properties of
the fields. Further, assume that Fr is linear and thatvz(0, z) is a known function calculated from
Ez(0, z). The region over which lens forces extend is divided into a number of elements of length
∆z. The following numerical algorithm (theEulerian difference method) can be used to find a
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r(z�∆z) � r(z) � r �(z)∆z,

r �(z�∆z) � r �(z) � [A(z,vz)r/mov
2
z � v �

zr �/vz]∆z

r �(z) � [a1(z)r � a2(z)r �] ∆z.

(6.10)

ro � ro, r �

o � 0,

r1 � ro, r �

1 � �a1(0)ro∆z,

r2 � ro�a1(0)ro,

r �

2 � �a1(0)ro∆z � a1(∆z)ro∆z � a2(∆z)a1(0)ro∆z.

(6.11)

particle orbit.

More accurate difference methods will be discussed in Section 7.8.
Applying Eq. (6.10), position and velocity at the first three positions in the lens are

Note that the quantityro appears in all terms; therefore,, the position and angle are proportional to
ro at the three axial locations. By induction, this conclusion holds for the final position and angle,
rf andrf’. Although the final orbit parameters are the sum of a large number of terms (becoming
infinite as∆z approaches zero), each term involves a factor ofro. There are two major results
of this observation.

1. The final radius is proportional to the initial radius for all particles. Therefore, orbits do
not cross. A linear force preserves laminar motion.
2. The final angle is proportional toro; therefore,rf’ is proportional torf. In the paraxial
limit, the orbits of initially parallel particles exiting the lens form similar triangles. All
particles pass through the axis at a point a distancerf/rf’ from the lens exit (Fig. 6.4).

The conclusion is that any region of static, azimuthally symmetric electric fields acts as a lens in
the paraxial approximation. If the radial force has the form+A(z,vz)r, the final radial velocity is
positive. In this case, particle orbits form similar triangles that emanate from a point upstream.
The lens, in this case, is said to have anegative focal length.

6.4 LENS PROPERTIES

The lenses used in light optics can often be approximated as thin lenses. In the thin-lens
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approximation, rays are deflected but have little change in radius passing through the lens. This
approximation is often invalid for charged particle optics; the Laplace equation implies that
electric and magnetic fields extend axial distances comparable to the diameter of the lens. The
particle orbits of Figure 6.4 undergo a significant radius change in the field region. Lenses in
which this occurs are calledthick lenses. This section reviews the parameters and equations
describing thick lenses.

A general charged particle lens is illustrated in Figure 6.5. It is an axial region of electric and
magnetic fields that deflects (and may accelerate) particles. Particles drift inballistic orbits(no
acceleration) in field-free regions outside the lens. The upstream field-free region is called the
object spaceand the downstream region is called theimage space. Lenses function with particle
motion in either direction, so that image and object spaces are interchangeable.

Orbits of initially parallel particles exiting the lens form similar triangles (Fig. 6.5). If the exit
orbits are projected backward in a straight line, they intersect the forward projection of entrance
orbits in a plane perpendicular to the axis. This is called theprincipal plane. The location of the
principal plane is denotedH1. The distance fromH1 to the point where orbits intersect is called
the focal length, f1. WhenH1 andf1 are known, the exit orbit of any particle that enters the lens
parallel to the axis can be specified. The exit orbit is the straight line connecting the focal point to
the intersection of the initial orbit with the principal plane. This construction also holds for
negative focal lengths, as shown in Figure 6.6.

There is also a principal plane (H2) and focal length (f2) for particles with negativevz. The focal
lengths need not be equal. This is often the case with electrostatic lenses where the direction
determines if particles are accelerated or decelerated. Two examples off1 � f2 are the aperture
lens (Section 6.5) and the immersion lens (Section 6.6). Athin lensis defined as one where the
axial length is small compared to the focal length. Since the principal planes are contained in the
field region,H1 = H2. A thin lens has only one principal plane. Particles emerge at the same radius
they entered but with a change in direction.
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There are two other common terms applied to lenses, the lens power and thef-number. The
strength of a lens is determined by how much it bends orbits. Shorter focal lengths mean stronger
lenses. The lens powerP is the inverse of the focal length,P = 1/f. If the focal length is measured
in meters, the power is given in m-1 or diopters. Thef-number is the ratio of focal length to the
lens diameter:f-number= f/D . Thef-number is important for describing focusing of nonlaminar
beams. It characterizes different optical systems in terms of the minimum focal spot size and
maximum achievable particle flux.

If the principal planes and focal lengths of a lens are known, the transformation of an orbit
between the lenses entrance and exit can be determined. This holds even for nonparallel entrance
orbits. The conclusion follows from the fact that particle orbits are described by a linear,
second-order differential equation. The relationship between initial and final orbits (r1, r1' � rf, rf’ )
can be expressed as two algebraic equations with four constant coefficients. Given the two initial
conditions and the coefficients (equivalent to the two principal planes and focal lengths), the final
orbit is determined. This statement will be proved in Chapter 8 using the ray transfer matrix
formalism.

Chapter 8 also contains a proof that a linear lens can produce an image. The definition of an
image is indicated in Figure 6.7. Two special planes are defined on either side of the lens: the
object planeand theimage plane(which depends on the lens properties and the location of the
object). An image is produced if all particles that leave a point in the object plane meet at a point
in the image plane, independent of their initial direction. There is a mapping of spatial points from
one plane to another. The image space and object space are interchangeable, depending on the
direction of the particles. The proof of the existence of an image is most easily performed with
matrix algebra. Nonetheless, assuming this property, the principal plane construction gives the
locations of image and object planes relative to the lens and the magnification passing from one to
another.

Figure 6.7 shows image formation by a lens. Orbits in the image and object space are related by
the principal plane construction; the exit orbits are determined by the principal plane and focal
length. These quantities give no detailed information on orbits inside the lens. The arrows
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M21 M12 � 1. (6.12)

D1/y1 � D2/f1, D1/f2 � D2/y2. (6.13)

represent an intensity distribution of particles in the transverse direction. Assume that each
point on the source arrow (of lengthD2) is mapped to a point in the image plane. The mapping
produces an image arrow of lengthD1. Parallel orbits are laminar, and the distance from the axis
to a point on the image is proportional to its position on the source. We want to find the locations
of the image and object planes (d1 andd2) relative to the principal planes, as well as the
magnification,M21 = D1/D2.

The image properties can be found by following two particle orbits leaving the object. Their
intersection in the image space determines the location of the image plane. The orbit with known
properties is the one that enters the lens parallel to the axis. If a parallel particle leaves the tip of
the object arrow, it exits the lens following a path that passes through the intersection with the
principal plane atr = D 2 and the pointf1. This orbit is markeda in Figure 6.7. In order to
determine a second orbit, we can interchange the roles of image and object and follow a parallel
particle that leaves the right-hand arrow in the-z direction. This orbit, markedb, is determined by
the points atH2 andf2. A property of particle dynamics under electric and magnetic forces is time
reversibility. Particles move backward along the same trajectories if-t is substituted fort. Thus, a
particle traveling from the original object to the image plane may also follow orbitb. If the two
arrows are in object and image planes, the orbits must connect as shown in Figure 6.7.

The image magnification for particles traveling from left to right isM21 = Dl/D2. For motion in
the opposite direction, the magnification isM12 = D2/D1. Therefore,

Referring to Figure 6.7, the following equations follow from similar triangles:
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f1/d1 � f2/d2 � 1. (6.14)

1/d1 � 1/d2 � 1/f, (6.15)

These are combined to givef1f2 = yly2. This equation can be rewritten in terms of the distancesd1

andd2 from the principal planes asf1f2 = (d2- f2)(d1 - fl). The result is the thick-lens equation

In light optics, the focal length of a simple lens does not depend on direction. In charged particle
optics, this holds for magnetic lenses orunipotentialelectrostatic lenses where the particle energy
does not change in the lens. In this case, Eq. (6.14) can be written in the familiar form

wheref1 = f 2 = f .
In summary, the following procedure is followed to characterize a linear lens. Measured data or

analytic expressions for the fields of the lens are used to calculate two special particle orbits. The
orbits enter the lens parallel to the axis from opposite axial directions. The orbit calculations are
performed analytically or numerically. They yield the principal planes and focal lengths.
Alternately, if the fields are unknown, lens properties may be determined experimentally. Parallel
particle beams are directed into the lens from opposite directions to determine the lens
parameters. If the lens is linear, all other orbits and the imaging properties are found from two
measurements.

In principle, the derivations of this section can be extended to more complex optical systems.
The equivalent of Eq. (6.14) could be derived for combinations of lenses. On the other hand, it is
much easier to treat optical systems using ray transfer matrices (Chapter 8). Remaining sections of
this chapter are devoted to the calculation of optical parameters for a variety of discrete
electrostatic and magnetostatic charged particle lenses.

6.5 ELECTROSTATIC APERTURE LENS

The electrostatic aperture lens is an axicentered hole in an electrode separating two regions of
axial electric field. The lens is illustrated in Figure 6.8. The fields may be produced by grids with
applied voltage relative to the aperture plate. If the upstream and downstream electric fields differ,
there will be radial components of electric field near the hole which focus or defocus particles. In
Figure 6.8, axial electric fields on both sides of the plate are positive, and the field at the left is
stronger. In this case, the radial fields point outward and the focal length is negative for positively
charged particles traveling in either direction. With reversed field direction (keeping the same
relative field strength) or with stronger field on the right side (keeping the same field polarity), the
lens has positive focal length. The transverse impulse on a particle passing through the hole is
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dvr/dz � qEr/movz � �(q/2movz) r [dEz(0,z)/dz]. (6.16)

vrf / vzf � r �

f � �qr (Ez2 � Ez1)/2movzavzf. (6.17)

proportional to the time spent in the radial electric fields. This is inversely proportional to the
particle velocity which is determined, in part, by the longitudinal fields. Furthermore, the final
axial velocity will depend on the particle direction. These factors contribute to the fact that the
focal length of the aperture lens depends on the transit direction of the particle, orf1 � f2.

Radial electric fields are localized at the aperture. Two assumptions allow a simple estimate of
the focal length: (1) the relative change in radius passing through the aperture is small (or, the
aperture is treated in the thin lens approximation) and (2) the relative change in axial velocity is
small in the vicinity of the aperture. Consider a particle moving in the+z direction withvr = 0.
The change invr for nonrelativistic motion is given by the equation

In Eq. (6.16), the time derivative was converted to a spatial derivative andEr was replaced
according to Eq. (6.5).

With the assumption of constantr andvz in the region of nonzero radial field, Eq. (6.16) can be
integrated directly to yield

wherevza is the particle velocity at the aperture andvrf is the radial velocity after exiting. The
quantityvzf is the final axial velocity; it depends on the final location of the particle and the field
Ez2. The focal length is related to the final radial position (r) and the ratio of the radial velocity to
the final axial velocity byvrf/vzf � r/f. The focal length is
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f � 2movzavzf q (Ez2�Ez1). (6.18)

f � 2mov
2
zf /q(Ez2�Ez1) � 4T/q(Ez2�Ez1). (6.19)

When the particle kinetic energy is large compared to the energy change passing through the
lens,vza� vzf, and we find the usual approximation for the aperture lens focal length

Thecharged particle extractor(illustrated in Fig. 6.9) is a frequently encountered application of
Eq. (6.19). The extractor gap pulls charged particles from a source and accelerates them. The
goal is to form a well-directed low-energy beam. When there is high average beam flux, grids
cannot be used at the downstream electrode and the particles must pass through a hole. The hole
acts as an aperture lens, withE1 > 0 andE2 = 0. The focal length is negative; the beam emerging
will diverge. This is called thenegative lens effectin extractor design. If a parallel or focused
beam is required, a focusing lens can be added downstream or the source can be constructed with
a concave shape so that particle orbits converge approaching the aperture.

6.6 ELECTROSTATIC IMMERSION LENS

The geometry of the electrostatic immersion lens is shown in Figure 6.10. It consists of two tubes
at different potential separated by a gap. Acceleration gaps between drift tubes of a standing-wave
linear accelerator (Chapter 14) have this geometry. The one-dimensional version of this lens
occurs in the gap between the Dees of a cyclotron (Chapter 15). Electric field distributions for a
cylindrical lens are plotted in Figure 6.10.
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∆vr � vrf � � dz [qEr(r,z)/movz]. (6.20)

Following the treatment used for the aperture lens, the change in radial velocity of a particle
passing through the gap is

The radial electric field is symmetric. There is no deflection if the particle radius and axial velocity
are constant. In contrast to the aperture lens, the focusing action of the immersion lens arises from
changes inr andvz. in the gap region. Typical particle orbits are illustrated in Figure 6.11. When
the longitudinal gap field accelerates particles, they are deflected inward on the entrance side of
the lens and outward on the exit side. The outward impulse is smaller because (1) the particles are
closer to the axis and (2) they move faster on the exit side. The converse holds for a deceleratin-
gap. Particles are deflected to larger radii on the entrance side and are therefore more strongly
influenced by the radial fields on the exit side. Furthermore, vz is lower at the exit side enhancing
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focusing. The focal length for either polarity or charge sign is positive.
The orbits in the immersion lens are more complex than those in the aperture lens. The focal

length must be calculated from analytic or numerical solutions for the electrostatic fields and
numerical solutions of particle orbits in the gap. In the paraxial approximation, only two orbits
need be found. The results of such calculations are shown in Figure 6.12 for varying tube diameter
with a narrow gap. It is convenient to reference the tube potentials to the particle source so that
the exit energy is given byTf = qV2. With this convention, the abscissa is the ratio of exit to
entrance kinetic energy. The focal length is short (lens power high) when there is a significant
change in kinetic energy passing through the lens. Theeinzel lensis a variant of the immersion
lens often encountered in low-energy electron guns. It consists of three colinear tubes, with the
middle tube elevated to high potential. The einzel lens consists of two immersion lenses in series;
it is a unipotential lens.

An interesting modification of the immersion lens isfoil or grid focusing. This focusing method,
illustrated in Figure 6.13, has been used in low-energy linear ionaccelerators. A conducting foil or
mesh is placed across the downstream tube of an accelerating gap. The resulting field pattern
looks like half of that for the immersion lens. Only the inward components of radial field are
present. The paraxial approximation no longer applies; the foil geometry has first-order focusing.
Net deflections do not depend on changes ofr andvz as in the immersion lens. Consequently,
focusing is much stronger. Foil focusing demonstrates one of the advantages gained by locating
charges and currents within the beam volume, rather than relying on external electrodes or coils.
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The charges, in this case, are image charges on the foil. An example of internal currents, the
toroidal field magnetic sector lens, is discussed in Section 6.8.

6.7 SOLENOIDAL MAGNETIC LENS

Thesolenoidal magnetic lensis illustrated in Figure 6.14. It consists of a region of cylindrically
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γmo (dvr/dt) � �qv
θ
Bz � γmov

2
θ
/r, (6.21)

γmo(dv
θ
/dt) � �qvzBz � γmovrvθ/r. (6.22)

v
θ
� qrBz/2γmo � constant� 0. (6.23)

symmetric radial and axial magnetic fields produced by axicentered coils carrying azimuthal
current. This lens is the only possible magnetic lens geometry consistent with cylindrical paraxial
beams. It is best suited to electron focusing. It is used extensively in cathode ray tubes, image
intensifiers, electron microscopes, and electron accelerators. Since the magnetic field is static,
there is no change of particle energy passing through the lens; therefore, it is possible to perform
relativistic derivations without complex mathematics.

Particles enter the lens through a region of radial magnetic fields. The Lorentz force (evz × Br)
is azimuthal. The resultingv

θ
leads to a radial force when crossed into theBz fields inside the lens.

The net effect is a deflection toward the axis, independent of charge state or transit direction.
Because there is an azimuthal velocity, radial and axial force equations must be solved with the
inclusion of centrifugal and coriolis forces.

The equations of motion (assuming constantγ) are

The axial equation of motion is simply thatvz is constant. We assume thatr is approximately
constant and that the particle orbit has a small net rotation in the lens. With the latter condition,
the Coriolis force can be neglected in Eq. (6.22). If the substitutiondv

θ
/dt � vz (dv

θ
/dz) is made

and Eq. (6.7) is used to expressBr in terms ofdBz(0, z)/dz, Eq. (6.22) can be integrated to give

Equation (6.23) is an expression of conservation of canonical angular momentum (see Section
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(θ�θo) � [qBz(0,z)/2γmovz] (z�zo). (6.24)

r �

f �

vrf

vz

�

�� dz [qBz(0,z)/γmovz]
2 r

4
. (6.25)

f �
�rf

r �

f

�

4

� dz [qBz(0,z)/γmovz]
2

. (6.26)

7.4). It holds even when the assumptions of this calculation are not valid. Equation (6.23) implies
that particles gain no net azimuthal velocity passing completely through the lens. This comes
about because they must cross negatively directed radial magnetic field lines at the exit that cancel
out the azimuthal velocity gained at the entrance. Recognizing thatdθ/dt = v

θ
/r and assuming that

Bz is approximately constant inr, the angular rotation of an orbit passing through the lens is

Rotation is the same for all particles, independent of radius. Substituting Eq. (6.23) and
converting the time derivative to a longitudinal derivative, Eq. (6.21) can be integrated to give

The focal length for a solenoidal magnetic lens is

The quantity in brackets is the reciprocal of a gyroradius [Eq. (3.38)]. Focusing in the solenoidal
lens (as in the immersion lens) is second order; the inward force results from a small azimuthal
velocity crossed into the main component of magnetic field. Focusing power is inversely
proportional to the square of the particle momentum. The magnetic field must increase
proportional to the relativistic mass to maintain a constant lens power. Thus, solenoidal lenses are
effective for focusing low-energy electron beams at moderate field levels but are seldom used for
beams of ions or high-energy electrons.

6.8 MAGNETIC SECTOR LENS

The lenses of Sections 6.5-6.7 exert cylindrically symmetric forces via paraxial electric and
magnetic fields. We now turn attention to devices in which focusing is one dimensional. In other
words, if the plane perpendicular to the axis is resolved into appropriate Cartesian coordinates(x,
y), the action of focusing forces is different and independent in each direction. The three examples
we shall consider are (1) horizontal focusing in a sector magnet (Section 6.8), (2) vertical
focusing at the edge of a sector magnet with an inclined boundary (Section 6.9), and (3)
quadrupole field lenses (Section 6.10).

A sector magnet (Fig. 6.15) consists of a gap with uniform magnetic field extending over a
bounded region. Focusing about an axis results from the location and shape of the field
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boundaries rather than variations of the field properties. To first approximation, the field is
uniform [B = Bx(x, y, z)x = Bo x] inside the magnet and falls off sharply at the boundary. Thex
direction (parallel to the field lines) is usually referred to as the vertical direction. They direction
(perpendicular to the field lines) is the horizontal direction. The beam axis is curved. The axis
corresponds to one possible particle orbit called thecentral orbit. The purpose of focusing
devices is to confine non-ideal orbits about this line. Sector field magnets are used to bend beams
in transport lines and circular accelerators and to separate particles according to momentum in
charged particle spectrometers.

The 180� spectrograph (Fig. 6.16) is an easily visualized example of horizontal focusing in a
sector field. Particles of different momentum enter the field through a slit and follow circular
orbits with gyroradii proportional to momentum. Particles entering at an angle have a displaced
orbit center. Circular orbits have the property that they reconverge after one half revolution
with only a second-order error in position. The sector magnet focuses all particles of the same
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f �
� rg / tan α. (6.27)

momentum to a line, independent of entrance angle.Focusing increases the acceptance of the
spectrometer. A variety of entrance angles can be accepted without degrading the momentum
resolution. The input beam need not be highly collimated so that the flux available for the
measurement is maximized. There is no focusing in the vertical direction; a method for achieving
simultaneous horizontal and vertical focusing is discussed in Section 6.9.

A sector field with angular extent less than 180� can act as a thick lens to produce a horizontal
convergence of particle orbits after exiting the field. This effect is illustrated in Figure 6.17.
Focusing occurs because off-axis particles travel different distances in the field and are bent a
different amount. If the field boundaries are perpendicular to the central orbit, we can show, for
initially parallel orbits, that the difference in bending is linearly proportional to the distance from
the axis.

The orbit of a particle (initially parallel to the axis) displaced a distance∆rl from the axis is
shown in Figure 6.17. The final displacement is related by∆yf = ∆y1 cosα, whereα is the angular
extent of the sector. The particle emerges from the lens at an angle∆θ = -∆yl sinα/rg, whererg, is
the gyroradius in the fieldBo. Given the final position and angle, the distance from the field
boundary to the focal point is

The focal distance is positive forα < 90�; emerging particle orbits are convergent. It is zero atα =
90�; initially parallel particles are focused to a point at the exit of a 90� sector. At 180� the
focusing distance approaches infinity.
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The sector field magnet must usually be treated as a thick lens. This gives us an opportunity to
reconsider the definition of the principal planes, which must be clarified when the beam axis is
curved. The planeH1 is the surface that gives the correct particle orbits in the image space. The
appropriate construction is illustrated in Figure 6.18a. A line parallel to the beam axis in the image
plane is projected backward. The principal plane is perpendicular to this line. The exit orbit
intersects the plane at a distance equal to the entrance distance. If a parallel particle enters the
sector field a distancey1 from the beam axis, its exit orbit is given by the line joining the focal
point with a point on the principal planey1 from the axis. The focal length is the distance from the
principal plane to the focal point. The planeH2 is defined with respect to orbits in the-z direction.

The focal length of a sector can be varied by inclining the boundary with respect to the beam
axis. Figure 18b shows a boundary with a positive inclination angle,β. When the inclination angle
is negative, particles at a larger distance from the central orbit gyrocenter travel longer distances
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in the field and are bent more. The focusing power of the lens in the horizontal direction is
increased. Conversely, forβ > 0, horizontal focusing is decreased. We will see in Section 6.9 that
in this case there is vertical focusing by the fringing fields of the inclined boundary.

A geometric variant of the sector field is the toroidal field sector lens. This is shown in Figure
6.19. A number of magnet coils are arrayed about an axis to produce an azimuthal magnetic field.
The fields in the spaces between coils are similar to sector fields. The field boundary is determined
by the coils. It is assumed that there are enough coils so that the fields are almost symmetric in
azimuth. The field is not radially uniform but varies asB

θ
(R,Z) = BoRo/R, whereR is the distance

from the lens axis. Nonetheless, boundaries can still be determined to focus particles to the lens
axis; the boundaries are no longer straight lines. The figure shows a toroidal field sector lens
designed to focus a parallel, annular beam of particles to a point.

The location of the focal point for a toroidal sector lens depends on the particle momentum.
Spectrometers based on the toroidal fields are calledorange spectrometersbecause of the
resemblance of the coils to the sections of an orange when viewed from the axis. They have the
advantage of an extremely large solid angle of acceptance and can be used for measurements at
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∆Px � � dt (qvzBy). (6.28)

low flux levels. The large acceptance outweighs the disadvantage of particle loss on the coils.
The toroidal field sector lens illustrates the advantages gained by locating applied currents

within the volume of the beam. The lens provides first-order focusing with cylindrical symmetry
about an axis, as contrasted to the solenoidal field lens, which has second-order focusing. The
ability to fine tune applied fields in the beam volume allows correction of focusing errors
(aberrations) that are unavoidable in lenses with only external currents.

6.9 EDGE FOCUSING

The term edge focusing refers to the vertical forces exerted on charged particles at a sector
magnet boundary that is inclined with respect to the main orbit. Figure 6.20 shows the fringing
field pattern at the edge of a sector field. The vertical field magnitude decreases away from the
magnet over a scale length comparable to the gap width. Fringing fields were neglected in treating
perpendicular boundaries in Section 6.8. This is justified if the gap width is small compared to the
particle gyroradius. In this case, the net horizontal deflection is about the same whether or not
some field lines bulge out of the gap. With perpendicular boundaries, there is no force in the
vertical direction becauseBy = 0.

In analyzing the inclined boundary, the coordinatez is parallel to the beam axis, and the
coordinateξ is referenced to the sector boundary (Fig. 6.20). When the inclination angleβ is
nonzero, there is a component ofB in they direction which produces a vertical force at the edge
when crossed into the particlevz. The focusing action can be calculated easily if the edge is treated
as a thin lens; in other words, the edge forces are assumed to provide an impulse to the particles.
The momentum change in the vertical direction is
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∆vx � (e/γmo) � dζ B
ζ

tanβ. (6.29)

fx �
γmovz/qBo

tanβ
�

rgo

tanβ
. (6.30)

The integral is taken over the time the particle is in the fringing field. They component of
magnetic field is related to theξ component of the fringing field byBy = Bξ sinβ. The integral of
Eq. (6.28) can be converted to an integral over the particle path noting thatvzdt = dz.Finally, the
differential path element can be related to the incremental quantity dξ by dz = dξ/ cosβ. Equation
(6.28) becomes

This integral can be evaluated by applying the equation�B�ds = 0 to the geometry of Figure 6.21.
The circuital integral extends from the uniform field region inside the sector magnet to the zero
field region outside. This implies that�Bξdξ = Box. Substituting into Eq. (6.29), the vertical
momentum change can be calculated. It is proportional tox, and the focal length can be
determined in the usual manner as

The quantityrgo is the particle gyroradius inside the constant-field sector magnet. Whenβ = 0
(perpendicular boundary), there is no vertical focusing, as expected. Whenβ > 0, there is vertical
focusing, and the horizontal focusing is decreased. Ifβ is positive and not too large, there can still
be a positive horizontal focal length. In this case, the sector magnet can focus in both directions.
This is the principal of the dual-focusing magnetic spectrometer, illustrated in Figure 6.22.
Conditions for producing an image of a point source can be calculated using geometric arguments
similar to those already used. Combined edge and sector focusing has also been used in a
high-energy accelerator, the zero-gradient synchrotron [A. V. Crewe,Proc. Intern. Conf. High
Energv Accelerators, CERN, Geneva, 1959, p. 359] (Section 15.5).
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d 2y/dz2
� (qBo/γmoavz) y, (6.31)

d 2x/dz2
� �(qBo/γmoavz) x. (6.32)

6. 10 MAGNETIC QUADRUPOLE LENS

The magnetic quadrupole field was introduced in Section 5.8. A quadrupole field lens is illustrated
in Figure 5.16. It consists of a magnetic field produced by hyperbolically shaped pole pieces
extending axially a lengthl. In terms of the transverse axes defined in Figure 5.161, the field
components areBx = Boy/a andBy = Box/a. Because the transverse magnetic deflections are
normal to the field components,Fx � x andFy � y. Motions in the transverse directions are
independent, and the forces are linear. We can analyze motion in each direction separately, and we
know (from Section 6.3) that the linear fields will act as one-dimensional focusing (or defocusing)
lenses.
The orbit equations are

The time derivatives were converted to axial derivatives. The solutions for the particle orbits are
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x(z) � x1 cos κmz � x �

1 sin κmz / κm, (6.33)

x �(z) � �x1 κm sin κmz � x �

1 cos κmz. (6.34)

y(z) � y1 cos κmz � y �

1 sin κmz / κm, (6.35)

y �(z) � y1 κm sin κmz � y �

1 cos κmz. (6.36)

wherex1, y1, x1', andy1' are the initial positions and angles. The parameterκm is
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κm � qBo/γmoavz (m�2) (6.37)

κe � qEo/γmoav2
z . (m�2) (6.38)

whereBo is the magnetic field magnitude at the surface of the pole piece closest to the axis and a
is the minimum distance from the axis to the pole surface. A similar expression applies to the
electrostatic quadrupole lens

In the electrostatic case, the x and y axes are defined as in Figure 4.14.
The principal plane and focal length for a magnetic quadrupole lens are shown in Figure 6.23 for

thex andy directions. They are determined from the orbit expressions of Eqs. (6.33) and (6.34).
The lens acts symmetrically for particle motion in either the+z or -z directions. The lens focuses
in thex direction but defocuses in they direction. If the field coils are rotated 90� (exchanging
North and South poles), there is focusing iny but defocusing inx. Quadrupole lenses are used
extensively for beam transport applications. They must be used in combinations to focus a beam
about the axis. Chapter 8 will show that the net effect of equal focusing and defocusing
quadrupole lenses is focusing.


